En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 20E08 9 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Natural subgroups of automorphisms - Guirardel, Vincent (Auteur de la Conférence) | CIRM H

Multi angle

I will survey our common work with Gilbert Levitt about subgroups of automorphisms of hyperbolic and relatively hyperbolic groups : McCool groups, stabilizers of trees, stabilizers of subgroups.

20E07 ; 20E08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely many factor representations of type $II_1$.[-]
I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely ...[+]

20E08 ; 20F65 ; 37B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we will prove the projective equidistribution of integral representations by quadratic norm forms in positive characteristic, with error terms, and deduce asymptotic counting results of these representations. We use the ergodic theory of lattice actions on Bruhat-Tits trees, and in particular the exponential decay of correlation of the geodesic flow on trees for Hölder variables coming from symbolic dynamics techniques.

20E08 ; 11J61 ; 37A25 ; 20G25 ; 37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Homomorphisms to 3-manifold groups and other families - Groves, Daniel (Auteur de la Conférence) | CIRM H

Multi angle

We are interested in the structure of the set of homomorphisms from a fixed (but arbitrary) finitely generated group G to the groups in some fixed family (such as the family of 3-manifold groups). I will explain what one might hope to say in different situations, and explain some applications to relatively hyperbolic groups and acylindrically hyperbolic groups, and some hoped-for applications to 3-manifold groups.
This is joint work with Michael Hull and joint work in preparation with Michael Hull and Hao Liang.[-]
We are interested in the structure of the set of homomorphisms from a fixed (but arbitrary) finitely generated group G to the groups in some fixed family (such as the family of 3-manifold groups). I will explain what one might hope to say in different situations, and explain some applications to relatively hyperbolic groups and acylindrically hyperbolic groups, and some hoped-for applications to 3-manifold groups.
This is joint work with Michael ...[+]

57N10 ; 20F65 ; 20F67 ; 20E08 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quasi-parabolic structures on groups - Balasubramanya, Sahana (Auteur de la Conférence) | CIRM H

Virtualconference

The study of the poset of hyperbolic structures H(G) on a group G was initiated by Abbott-Balasubramanya-Osin. However, the sub-poset of quasi- parabolic structures is still very far from being understood and several questions remain unanswered.
In this talk, I will talk about the motivation behind our work, describe some structural results related to quasi-parabolic structures and thus answer some of the open questions. I will end my talk by discussing ongoing work in the area.
This talk contains some joint work with C.Abbott, D.Osin and A.Rasmussen.[-]
The study of the poset of hyperbolic structures H(G) on a group G was initiated by Abbott-Balasubramanya-Osin. However, the sub-poset of quasi- parabolic structures is still very far from being understood and several questions remain unanswered.
In this talk, I will talk about the motivation behind our work, describe some structural results related to quasi-parabolic structures and thus answer some of the open questions. I will end my talk by ...[+]

20F65 ; 20F67 ; 20E08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quasi-actions and almost normal subgroups - Margolis, Alex (Auteur de la Conférence) | CIRM H

Virtualconference

If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. Work of Mosher-Sageev-Whyte shows that free groups have this property, but it holds much more generally. For instance, we show that every hyperbolic group is either commensurable to a cocompact lattice in rank one Lie group, or it is discretisable.
We give several applications and indicate possible future directions of this ongoing work, particularly in showing that normal and almost normal subgroups are often preserved by quasi-isometries. For instance, we show that any finitely generated group quasi-isometric to a Z-by-hyperbolic group is Z-by-hyperbolic. We also show that within the class of residually finite groups, the class of central extensions of finitely generated abelian groups by hyperbolic groups is closed under quasi-isometries.[-]
If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. ...[+]

20F65 ; 20E08 ; 20J05 ; 57M07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Gaussian functor associates to every orthogonal representation of a group G on a Hilbert space, a probability measure preserving action of G called a Gaussian action. This construction is a fundamental tool in ergodic theory and is the source of a large and interesting class of probability measure preserving actions. In this talk, I will present a generalization of the Gaussian functor which associates to every affine isometric action of G on a Hilbert space, a nonsingular Gaussian action which is not measure preserving. This provides a new and large class of nonsingular actions whose properties are related in a very subtle way to the geometry of the original affine isometric action. In some cases, such as affine isometric actions comming from groups acting on trees, a fascinating phase transition phenomenon occurs.This talk is based on a joint work with Yuki Arano and Yusuke Isono, as well as a more recent joint work with Stefaan Vaes.[-]
The Gaussian functor associates to every orthogonal representation of a group G on a Hilbert space, a probability measure preserving action of G called a Gaussian action. This construction is a fundamental tool in ergodic theory and is the source of a large and interesting class of probability measure preserving actions. In this talk, I will present a generalization of the Gaussian functor which associates to every affine isometric action of G ...[+]

37A40 ; 20E08 ; 20F65 ; 28C20 ; 37A50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quadratic polynomials - Bartholdi, Laurent (Auteur de la Conférence) | CIRM H

Multi angle

Quadratic polynomials have been investigated since the beginnings of complex dynamics, and are often approached through combinatorial theories such as laminations or Hubbard trees. I will explain how both of these approaches fit in a more algebraic framework: that of iterated monodromy groups. The invariant associated with a quadratic polynomial is a group acting on the infinite binary tree, these groups are interesting in their own right, and provide insight and structure to complex dynamics: I will explain in particular how the conversion between Hubbard trees and external angles amounts to a change of basis, how the limbs and wakes may be defined in the language of group theory, and present a model of the Mandelbrot set consisting of groups. This is joint work with Dzmitry Dudko and Volodymyr Nekrashevych.[-]
Quadratic polynomials have been investigated since the beginnings of complex dynamics, and are often approached through combinatorial theories such as laminations or Hubbard trees. I will explain how both of these approaches fit in a more algebraic framework: that of iterated monodromy groups. The invariant associated with a quadratic polynomial is a group acting on the infinite binary tree, these groups are interesting in their own right, and ...[+]

37F10 ; 20E08 ; 37B10 ; 37C25 ; 37F45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Decomposition results in rational dynamics - Hlushchanka, Mikhail (Auteur de la Conférence) | CIRM H

Multi angle

There are various classical and more recent decomposition results in mapping class group theory, geometric group theory, and complex dynamics (which include celebrated results by Bill Thurston). We will discuss several natural decompositions that arise in the study of rational maps, such as Pilgrim's canonical decomposition and Levy decomposition (by Bartholdi and Dudko). I will also introduce a new decomposition of rational maps based on the topology of their Julia sets (obtained jointly with Dima Dudko and Dierk Schleicher). At the end of the talk, we will briefly consider connections of this novel decomposition to geometric group theory and self-similar groups.[-]
There are various classical and more recent decomposition results in mapping class group theory, geometric group theory, and complex dynamics (which include celebrated results by Bill Thurston). We will discuss several natural decompositions that arise in the study of rational maps, such as Pilgrim's canonical decomposition and Levy decomposition (by Bartholdi and Dudko). I will also introduce a new decomposition of rational maps based on the ...[+]

37F10 ; 37F20 ; 37B10 ; 37B40 ; 20F67 ; 20E08

Sélection Signaler une erreur