m

F Nous contacter


0

Documents  20E08 | enregistrements trouvés : 7

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely many factor representations of type $II_1$.
I will present results of three studies, performed in collaboration with M.Benli, L.Bowen, A.Dudko, R.Kravchenko and T.Nagnibeda, concerning the invariant and characteristic random subgroups in some groups of geometric origin, including hyperbolic groups, mapping class groups, groups of intermediate growth and branch groups. The role of totally non free actions will be emphasized. This will be used to explain why branch groups have infinitely ...

20E08 ; 20F65 ; 37B05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The Gaussian functor associates to every orthogonal representation of a group G on a Hilbert space, a probability measure preserving action of G called a Gaussian action. This construction is a fundamental tool in ergodic theory and is the source of a large and interesting class of probability measure preserving actions. In this talk, I will present a generalization of the Gaussian functor which associates to every affine isometric action of G on a Hilbert space, a nonsingular Gaussian action which is not measure preserving. This provides a new and large class of nonsingular actions whose properties are related in a very subtle way to the geometry of the original affine isometric action. In some cases, such as affine isometric actions comming from groups acting on trees, a fascinating phase transition phenomenon occurs.This talk is based on a joint work with Yuki Arano and Yusuke Isono, as well as a more recent joint work with Stefaan Vaes.
The Gaussian functor associates to every orthogonal representation of a group G on a Hilbert space, a probability measure preserving action of G called a Gaussian action. This construction is a fundamental tool in ergodic theory and is the source of a large and interesting class of probability measure preserving actions. In this talk, I will present a generalization of the Gaussian functor which associates to every affine isometric action of G ...

37A40 ; 20E08 ; 20F65 ; 28C20 ; 37A50

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We are interested in the structure of the set of homomorphisms from a fixed (but arbitrary) finitely generated group G to the groups in some fixed family (such as the family of 3-manifold groups). I will explain what one might hope to say in different situations, and explain some applications to relatively hyperbolic groups and acylindrically hyperbolic groups, and some hoped-for applications to 3-manifold groups.
This is joint work with Michael Hull and joint work in preparation with Michael Hull and Hao Liang.
We are interested in the structure of the set of homomorphisms from a fixed (but arbitrary) finitely generated group G to the groups in some fixed family (such as the family of 3-manifold groups). I will explain what one might hope to say in different situations, and explain some applications to relatively hyperbolic groups and acylindrically hyperbolic groups, and some hoped-for applications to 3-manifold groups.
This is joint work with Michael ...

57N10 ; 20F65 ; 20F67 ; 20E08 ; 57M07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In this talk, we will prove the projective equidistribution of integral representations by quadratic norm forms in positive characteristic, with error terms, and deduce asymptotic counting results of these representations. We use the ergodic theory of lattice actions on Bruhat-Tits trees, and in particular the exponential decay of correlation of the geodesic flow on trees for Hölder variables coming from symbolic dynamics techniques.

20E08 ; 11J61 ; 37A25 ; 20G25 ; 37D40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Natural subgroups of automorphisms
Guirardel, Vincent (Auteur de la Conférence) | CIRM (Editeur )

I will survey our common work with Gilbert Levitt about subgroups of automorphisms of hyperbolic and relatively hyperbolic groups : McCool groups, stabilizers of trees, stabilizers of subgroups.

20E07 ; 20E08

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The study of the poset of hyperbolic structures H(G) on a group G was initiated by Abbott-Balasubramanya-Osin. However, the sub-poset of quasi- parabolic structures is still very far from being understood and several questions remain unanswered.
In this talk, I will talk about the motivation behind our work, describe some structural results related to quasi-parabolic structures and thus answer some of the open questions. I will end my talk by discussing ongoing work in the area.
This talk contains some joint work with C.Abbott, D.Osin and A.Rasmussen.
The study of the poset of hyperbolic structures H(G) on a group G was initiated by Abbott-Balasubramanya-Osin. However, the sub-poset of quasi- parabolic structures is still very far from being understood and several questions remain unanswered.
In this talk, I will talk about the motivation behind our work, describe some structural results related to quasi-parabolic structures and thus answer some of the open questions. I will end my talk by ...

20F65 ; 20F67 ; 20E08

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. Work of Mosher-Sageev-Whyte shows that free groups have this property, but it holds much more generally. For instance, we show that every hyperbolic group is either commensurable to a cocompact lattice in rank one Lie group, or it is discretisable.
We give several applications and indicate possible future directions of this ongoing work, particularly in showing that normal and almost normal subgroups are often preserved by quasi-isometries. For instance, we show that any finitely generated group quasi-isometric to a Z-by-hyperbolic group is Z-by-hyperbolic. We also show that within the class of residually finite groups, the class of central extensions of finitely generated abelian groups by hyperbolic groups is closed under quasi-isometries.
If a group G acts isometrically on a metric space X and Y is any metric space that is quasi-isometric to X, then G quasi-acts on Y. A fundamental problem in geometric group theory is to straighten (or quasi-conjugate) a quasi-action to an isometric action on a nice space. We will introduce and investigate discretisable spaces, those for which every cobounded quasi-action can be quasi-conjugated to an isometric action of a locally finite graph. ...

20F65 ; 20E08 ; 20J05 ; 57M07

Z