m

F Nous contacter


0

Documents  20F36 | enregistrements trouvés : 6

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Braids and Galois groups
Matzat, B. Heinrich (Auteur de la Conférence) | CIRM (Editeur )

arithmetic fundamental group - Galois theory - braid groups - rigid analytic geometry - rigidity of finite groups

12F12 ; 11R32 ; 20F36 ; 20D08

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Morsifications and mutations
Fomin, Sergey (Auteur de la Conférence) | CIRM (Editeur )

I will discuss a connection between the topology of isolated singularities of plane curves and the mutation equivalence of the quivers associated with their morsifications. Joint work with Pavlo Pylyavskyy, Eugenii Shustin, and Dylan Thurston.

13F60 ; 20F36 ; 57M25 ; 58K65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Pseudo-Anosov braids are generic
Wiest, Bert (Auteur de la Conférence) | CIRM (Editeur )

We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the conjugacy search problem can be solved in quadratic time. The idea behind both results is that generic braids can be conjugated ''easily'' into a rigid braid.
braid groups - Garside groups - Nielsen-Thurston classification - pseudo-Anosov - conjugacy problem
We prove that generic elements of braid groups are pseudo-Anosov, in the following sense: in the Cayley graph of the braid group with $n\geq 3$ strands, with respect to Garside's generating set, we prove that the proportion of pseudo-Anosov braids in the ball of radius $l$ tends to $1$ exponentially quickly as $l$ tends to infinity. Moreover, with a similar notion of genericity, we prove that for generic pairs of elements of the braid group, the ...

20F36 ; 20F10 ; 20F65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

braid groups - conformal blocks - KZ equation - quantum group symmetry - hypergeometric integrals - Gauss-Manin connection

20F36 ; 32G34 ; 32S40 ; 57M07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

One of the main examples of Artin groups are braid groups. We can use powerful topological methods on braid groups that come from the action of braid on the curve complex of the n-puctured disk. However, these methods cannot be applied in general to Artin groups. In this talk we explain how we can construct a complex for Artin groups, which is an analogue to the curve complex in the braid case, by using parabolic subgroups.

20F36 ; 20F65 ; 57M07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Parabolic subgroups are the fundamental building blocks of Artin groups. These subgroups are isomorphic copies of smaller Artin groups nested inside a given Artin group. In this talk, I will discuss questions surrounding how parabolic subgroups sit inside Artin groups and how they interact with each other. I will show that, in an FC type Artin group, the intersection of two finite type parabolic subgroups is a parabolic subgroup. I will also discuss how parabolic subgroups might be used to construct a simplicial complex for Artin groups similar to the curve complex for mapping class groups. This talk will focus on using geometric techniques to generalize results known for finite type Artin groups to Artin groups of FC type.
Parabolic subgroups are the fundamental building blocks of Artin groups. These subgroups are isomorphic copies of smaller Artin groups nested inside a given Artin group. In this talk, I will discuss questions surrounding how parabolic subgroups sit inside Artin groups and how they interact with each other. I will show that, in an FC type Artin group, the intersection of two finite type parabolic subgroups is a parabolic subgroup. I will also ...

20F65 ; 20F36

Z