m

F Nous contacter


0

Documents  20F67 | enregistrements trouvés : 11

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Given an automorphism of the free group, we consider the mapping torus defined with respect to the automorphism. If the automorphism is atoroidal, then the resulting free-by-cyclic group is hyperbolic by work of Brinkmann. In addition, if the automorphism is fully irreducible, then work of Kapovich-Kleiner proves the boundary of the group is homeomorphic to the Menger curve. However, their proof is very general and gives no tools to further study the boundary and large-scale geometry of these groups. In this talk, I will explain how to construct explicit embeddings of non-planar graphs into the boundary of these groups whenever the group is hyperbolic. Along the way, I will illustrate how our methods distinguish free-by-cyclic groups which are the fundamental group of a 3-manifold. This is joint work with Yael Algom-Kfir and Arnaud Hilion.
Given an automorphism of the free group, we consider the mapping torus defined with respect to the automorphism. If the automorphism is atoroidal, then the resulting free-by-cyclic group is hyperbolic by work of Brinkmann. In addition, if the automorphism is fully irreducible, then work of Kapovich-Kleiner proves the boundary of the group is homeomorphic to the Menger curve. However, their proof is very general and gives no tools to further ...

20F65 ; 20F67 ; 20E36

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the general case of a torsion-free hyperbolic group $G$; we show that every element in $G$ has a well-defined exponential growth rate under iteration of $f$, and that only finitely many exponential growth rates arise as $g$ varies in $G$. In addition, we show the following dichotomy: every element of $G$ grows either exponentially fast or polynomially fast under iteration of $f$.
This is a joint work with Rémi Coulon, Arnaud Hilion and Gilbert Levitt.
Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the ...

57M07 ; 20E06 ; 20F34 ; 20F65 ; 20E36 ; 20F67

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We are interested in the structure of the set of homomorphisms from a fixed (but arbitrary) finitely generated group G to the groups in some fixed family (such as the family of 3-manifold groups). I will explain what one might hope to say in different situations, and explain some applications to relatively hyperbolic groups and acylindrically hyperbolic groups, and some hoped-for applications to 3-manifold groups.
This is joint work with Michael Hull and joint work in preparation with Michael Hull and Hao Liang.
We are interested in the structure of the set of homomorphisms from a fixed (but arbitrary) finitely generated group G to the groups in some fixed family (such as the family of 3-manifold groups). I will explain what one might hope to say in different situations, and explain some applications to relatively hyperbolic groups and acylindrically hyperbolic groups, and some hoped-for applications to 3-manifold groups.
This is joint work with Michael ...

57N10 ; 20F65 ; 20F67 ; 20E08 ; 57M07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Groups with Bowditch boundary a 2-sphere
Tshishiku, Bena (Auteur de la Conférence) | CIRM (Editeur )

Bestvina-Mess showed that the duality properties of a group $G$ are encoded in any boundary that gives a Z-compactification of $G$. For example, a hyperbolic group with Gromov boundary an $n$-sphere is a PD$(n+1)$ group. For relatively hyperbolic pairs $(G,P)$, the natural boundary - the Bowditch boundary - does not give a Z-compactification of G. Nevertheless we show that if the Bowditch boundary of $(G,P)$ is a 2-sphere, then $(G,P)$ is a PD(3) pair.
This is joint work with Genevieve Walsh.
Bestvina-Mess showed that the duality properties of a group $G$ are encoded in any boundary that gives a Z-compactification of $G$. For example, a hyperbolic group with Gromov boundary an $n$-sphere is a PD$(n+1)$ group. For relatively hyperbolic pairs $(G,P)$, the natural boundary - the Bowditch boundary - does not give a Z-compactification of G. Nevertheless we show that if the Bowditch boundary of $(G,P)$ is a 2-sphere, then $(G,P)$ is a ...

57M07 ; 20F67 ; 20F65 ; 57M50

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially almost free (i.e., the stabilizers are finite). Various corollaries and generalizations of this result will be discussed.
A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially ...

20F67 ; 20F65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Formal conjugacy growth and hyperbolicity
Ciobanu, Laura (Auteur de la Conférence) | CIRM (Editeur )

Rivin conjectured that the conjugacy growth series of a hyperbolic group is rational if and only if the group is virtually cyclic. In this talk I will present the proof (joint with Hermiller, Holt and Rees) that the conjugacy growth series of a virtually cyclic group is rational, and then also confirm the other direction of the conjecture, by showing that the conjugacy growth series of a non-elementary hyperbolic group is transcendental (joint with Antolín). The result for non-elementary hyperbolic groups can be used to prove a formal language version of Rivin's conjecture for any finitely generated acylindrically hyperbolic group G, namely that no set of minimal length conjugacy representatives of G can be regular.
Rivin conjectured that the conjugacy growth series of a hyperbolic group is rational if and only if the group is virtually cyclic. In this talk I will present the proof (joint with Hermiller, Holt and Rees) that the conjugacy growth series of a virtually cyclic group is rational, and then also confirm the other direction of the conjecture, by showing that the conjugacy growth series of a non-elementary hyperbolic group is transcendental (joint ...

20F67 ; 68Q45

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Virtualconference  Shortcut graphs and groups
Hoda, Nima (Auteur de la Conférence) | CIRM (Editeur )

Shortcut graphs are graphs in which long enough cycles cannot embed without metric distortion. Shortcut groups are groups which act properly and cocompactly on shortcut graphs. These notions unify a surprisingly broad family of graphs and groups of interest in geometric group theory and metric graph theory including: systolic and quadric groups (in particular finitely presented C(6) and C(4)-T(4) small cancellation groups), cocompactly cubulated groups, hyperbolic groups, Coxeter groups and the Baumslag-Solitar group BS(1,2). Most of these examples satisfy a strong form of the shortcut property. I will discuss some of these examples as well as some general constructions and properties of shortcut graphs and groups.
Shortcut graphs are graphs in which long enough cycles cannot embed without metric distortion. Shortcut groups are groups which act properly and cocompactly on shortcut graphs. These notions unify a surprisingly broad family of graphs and groups of interest in geometric group theory and metric graph theory including: systolic and quadric groups (in particular finitely presented C(6) and C(4)-T(4) small cancellation groups), cocompactly cubulated ...

20F65 ; 20F67 ; 05C12

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The study of the poset of hyperbolic structures H(G) on a group G was initiated by Abbott-Balasubramanya-Osin. However, the sub-poset of quasi- parabolic structures is still very far from being understood and several questions remain unanswered.
In this talk, I will talk about the motivation behind our work, describe some structural results related to quasi-parabolic structures and thus answer some of the open questions. I will end my talk by discussing ongoing work in the area.
This talk contains some joint work with C.Abbott, D.Osin and A.Rasmussen.
The study of the poset of hyperbolic structures H(G) on a group G was initiated by Abbott-Balasubramanya-Osin. However, the sub-poset of quasi- parabolic structures is still very far from being understood and several questions remain unanswered.
In this talk, I will talk about the motivation behind our work, describe some structural results related to quasi-parabolic structures and thus answer some of the open questions. I will end my talk by ...

20F65 ; 20F67 ; 20E08

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The relationship between the large-scale geometry of a group and its algebraic structure can be studied via three notions: a group's quasi-isometry class, a group's abstract commensurability class, and geometric actions on proper geodesic metric spaces. A common model geometry for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is action rigid if every group G' that has a common model geometry with G is abstractly commensurable to G. For example, a closed hyperbolic n-manifold is not action rigid for all n at least three. In contrast, we show that free products of closed hyperbolic manifold groups are action rigid. Consequently, we obtain the first examples of Gromov hyperbolic groups that are quasi-isometric but do not virtually have a common model geometry. This is joint work with Daniel Woodhouse.
The relationship between the large-scale geometry of a group and its algebraic structure can be studied via three notions: a group's quasi-isometry class, a group's abstract commensurability class, and geometric actions on proper geodesic metric spaces. A common model geometry for groups G and G' is a proper geodesic metric space on which G and G' act geometrically. A group G is action rigid if every group G' that has a common model geometry ...

20F65 ; 20F67 ; 20E06 ; 57M07 ; 57M10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Virtualconference  Spaces of cubulations
Fioravanti, Elia (Auteur de la Conférence) | CIRM (Editeur )

The theory of group actions on CAT(0) cube complexes has exerted a strong influence on geometric group theory and low-dimensional topology in the last two decades. Indeed, knowing that a group G acts properly and cocompactly on a CAT(0) cube complex reveals a lot of its algebraic structure. However, in general, "cubulations’’ are non-canonical and the group G can act on cube complexes in many different ways. It is thus natural to try and formulate a good notion of "space of all cubulations of G'', which would prove useful in the study of Out(G) for quite general groups G. I will describe some results in this direction, based on joint works with J. Beyrer and M. Hagen.
The theory of group actions on CAT(0) cube complexes has exerted a strong influence on geometric group theory and low-dimensional topology in the last two decades. Indeed, knowing that a group G acts properly and cocompactly on a CAT(0) cube complex reveals a lot of its algebraic structure. However, in general, "cubulations’’ are non-canonical and the group G can act on cube complexes in many different ways. It is thus natural to try and ...

20F65 ; 20F67 ; 20F34 ; 57-XX

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The Cremona group is the group of birational transformations of the projective plane. Even if this group comes from algebraic geometry, tools from geometric group theory have been powerful to study it. In this talk, based on a joint work with Christian Urech, we will build a natural action of the Cremona group on a CAT(0) cube complex. We will then explain how we can obtain new and old group theoretical and dynamical results on the Cremona group.

14E07 ; 20F65 ; 20F67

Z