En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 22E40 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Margulis-Zimmer's super-rigidity - Lee, Homin (Auteur de la Conférence) | CIRM H

Multi angle

We introduce Margulis' and Zimmer's superrigidity. Statements give heuristics in Zimmer program, that is higher rank lattice actions on smooth manifolds. After we state the statement, we mainly focus how it interacts with group actions. Finally, we will also discuss about open questions.

22E40 ; 57M60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
This is joint with Adrian Langer. Let $X$ be a smooth complex projective variety. We show that every rigid integral irreducible representation $ \pi_1(X,x) \to SL(3,\mathbb{C})$ is of geometric origin, i.e. it comes from a family of smooth projective varieties. The underlying theorem is a classification of VHS of type $(1,1,1)$ using some ideas from birational geometry.

14F35 ; 14D07 ; 58E20 ; 22E40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Character rigidity and non-commutative ergodic theory - Boutonnet, Rémi (Auteur de la Conférence) | CIRM H

Multi angle

I will present a recent result in the theory of unitary representations of lattices in semi-simple Lie groups, which can be viewed as simultaneous generalization of Margulis normal subgroup theorem and C*-simplicity and the unique trace property for such lattices. The strategy of proof gathers ideas of both of these results: we extend Margulis' dynamical approach to the non-commutative setting, and apply this to the conjugation dynamical system induced by a unitary representation. On the way, we obtain a new proof of Peterson's character rigidity result, and a new rigidity result for uniformly recurrent subgroups of such lattices. I will give some basics on non-commutative ergodic theory and explain-some steps to prove the main result and its applications. This is based on joint works with Uri Bader, Cyril Houdayer, and Jesse Peterson.[-]
I will present a recent result in the theory of unitary representations of lattices in semi-simple Lie groups, which can be viewed as simultaneous generalization of Margulis normal subgroup theorem and C*-simplicity and the unique trace property for such lattices. The strategy of proof gathers ideas of both of these results: we extend Margulis' dynamical approach to the non-commutative setting, and apply this to the conjugation dynamical system ...[+]

22D10 ; 22D25 ; 22E40 ; 46L10 ; 46L30

Sélection Signaler une erreur