En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 34M55 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Extreme superposition: rogue waves of infinite order - Bilman, Deniz (Auteur de la Conférence) | CIRM H

Multi angle

The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and near-field limit of a broad class of solutions of the same equation. In this talk, we will present several recent results on the emergence of these special solutions along with their interesting asymptotic and exact properties. Notably, these solutions exhibit anomalously slow temporaldecay and are connected to the third Painlev´e equation. Finally, we will extend the emergence of rogue waves of infinite order to the first several flows of the AKNS hierarchy — allowing for arbitrarily many simultaneous flows — and report on recent work regarding their space-time asymptotic behavior under a general flow from the hierarchy.[-]
The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and ...[+]

35Q55 ; 35Q15 ; 35Q51 ; 37K10 ; 37K15 ; 37K40 ; 34M55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Monodromy dependence of Painlevé tau functions - Lisovyi, Oleg (Auteur de la Conférence) | CIRM H

Multi angle

In many interesting cases, distribution functions of random matrix theory and correlation functions of integrable models of statistical mechanics and quantum field theory are given by tau functions of Painlevé equations. I will discuss an extension of the Jimbo-Miwa-Ueno differential to the space of monodromy data and explain how this construction can be used to compute constant terms in the tau function asymptotics.

34M35 ; 34M55 ; 34E10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We identify the persistence probability for the zero-temperature non-equilibrium Glauber dynamics of the half-space Ising chain as a particular Painlevé VI transcendent, with monodromy exponents (1/2,1/2,0,0). Among other things, this characterization a la Tracy-Widom permits to relate our specific Bonnet-Painlevé VI to the one found by Jimbo & Miwa and characterizing the diagonal correlation functions for the planar static Ising model. In particular, in terms of the standard critical exponents eta=1/4 and beta=1/8 for the latter, this implies that the probability that the limiting Gaussian real Kac's polynomial has no real root decays with an exponent 4(eta+beta)=3/4.[-]
We identify the persistence probability for the zero-temperature non-equilibrium Glauber dynamics of the half-space Ising chain as a particular Painlevé VI transcendent, with monodromy exponents (1/2,1/2,0,0). Among other things, this characterization a la Tracy-Widom permits to relate our specific Bonnet-Painlevé VI to the one found by Jimbo & Miwa and characterizing the diagonal correlation functions for the planar static Ising model. In ...[+]

34M55 ; 60G55 ; 34M35

Sélection Signaler une erreur