En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35B65 10 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Whether there is global regularity or finite time blow-up for the space homogeneous Landau equation with Coulomb potential is a longstanding open problem in the mathematical analysis of kinetic models. This talk shows that the Hausdorff dimension of the set of singular times of the global weak solutions obtained by Villanis procedure is at most 1/2.
(Work in collaboration with M.P. Gualdani, C. Imbert and A. Vasseur)

35Q20 ; 35B65 ; 35K15 ; 35B44

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quantitative De Giorgi methods in kinetic theory - Mouhot, Clément (Auteur de la Conférence) | CIRM H

Virtualconference

We consider hypoelliptic equations of kinetic Fokker-Planck type, also sometimes called of Kolmogorov or Langevin type, with rough coefficients in the drift-diffusion operator in velocity. We present novel short quantitative proofs of the De Giorgi intermediate-value Lemma as well as weak Harnack and Harnack inequalities (which imply Hölder continuity with quantitative estimates).
This is a joint work with Jessica Guerand.

35Q84 ; 35B45 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gradient bounds for the heat kernel on the Vicsek set - Chen, Li (Auteur de la Conférence) | CIRM H

Multi angle

In this talk, we discuss functional inequalities and gradient bounds for the heat kernel on the Vicsek set. The Vicsek set has both fractal and tree structure, whereas neither analogue of curvature nor obvious differential structure exists. We introduce Sobolev spaces in that setting and prove several characterizations based on a metric, a discretization or a weak gradient approach. We also obtain $L^{p}$ Poincaré inequalities and pointwise gradient bounds for the heat kernel. These properties have important applications in harmonic analysis like Sobolev inequalities and the Riesz transform. Moreover, several of our techniques and results apply to more general fractals and trees.[-]
In this talk, we discuss functional inequalities and gradient bounds for the heat kernel on the Vicsek set. The Vicsek set has both fractal and tree structure, whereas neither analogue of curvature nor obvious differential structure exists. We introduce Sobolev spaces in that setting and prove several characterizations based on a metric, a discretization or a weak gradient approach. We also obtain $L^{p}$ Poincaré inequalities and pointwise ...[+]

46E35 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Traveling waves for a family of Szegö equations - Grellier, Sandrine (Auteur de la Conférence) | CIRM H

Multi angle

About fifteen years ago, Patrick Gérard and I introduced the cubic Szegö equation$$\begin{aligned}i \partial_{t} u & =\Pi\left(|u|^{2} u\right), \quad u=u(x, t), \quad x \in \mathbb{T}, t \in \mathbb{R} \\u(x, 0) & =u_{0}(x) .\end{aligned}$$Here $\Pi$ denotes the Szegö projector which maps $L^{2}(\mathbb{T})$-functions into the Hardy space of $L^{2}(\mathbb{T})$-traces of holomorphic functions in the unit disc. It turned out that the dynamics of this equation were unexpected. This motivated us to try to understand whether the cubic Szegö equation is an isolated phenomenon or not. This talk is part of this project.
We consider a family of perturbations of the cubic Szegö equation and look for their traveling waves. Let us recall that traveling waves are particular solutions of the form$$u(x, t)=\mathrm{e}^{-i \omega t} u_{0}\left(\mathrm{e}^{-i c t} x\right), \quad \omega, c \in \mathbb{R}$$We will explain how the spectral analysis of some operators allows to characterize them.
From joint works with Patrick Gérard.[-]
About fifteen years ago, Patrick Gérard and I introduced the cubic Szegö equation$$\begin{aligned}i \partial_{t} u & =\Pi\left(|u|^{2} u\right), \quad u=u(x, t), \quad x \in \mathbb{T}, t \in \mathbb{R} \\u(x, 0) & =u_{0}(x) .\end{aligned}$$Here $\Pi$ denotes the Szegö projector which maps $L^{2}(\mathbb{T})$-functions into the Hardy space of $L^{2}(\mathbb{T})$-traces of holomorphic functions in the unit disc. It turned out that the dynamics of ...[+]

35B05 ; 35B65 ; 47B35 ; 37K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We investigate the Dirichlet problem for a non-divergence form elliptic operator $L=a^{i j}(x) D_{i j}+b^{i}(x) D_{i}-c(x)$ in a bounded domain of $\mathbb{R}^{d}$. Under certain conditions on the coefficients of $L$, we first establish the existence of a unique Green's function in a ball and derive two-sided pointwise estimates for it. Utilizing these results, we demonstrate the equivalence of regular points for $L$ and those for the Laplace operator, characterized via the Wiener test. This equivalence facilitates the unique solvability of the Dirichlet problem with continuous boundary data in regular domains. Furthermore, we construct the Green's function for $L$ in regular domains and establish pointwise bounds for it.[-]
We investigate the Dirichlet problem for a non-divergence form elliptic operator $L=a^{i j}(x) D_{i j}+b^{i}(x) D_{i}-c(x)$ in a bounded domain of $\mathbb{R}^{d}$. Under certain conditions on the coefficients of $L$, we first establish the existence of a unique Green's function in a ball and derive two-sided pointwise estimates for it. Utilizing these results, we demonstrate the equivalence of regular points for $L$ and those for the Laplace ...[+]

35J08 ; 35J25 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Singular SPDE with rough coefficients - Otto, Felix (Auteur de la Conférence) | CIRM H

Post-edited

We are interested in parabolic differential equations $(\partial_t-a\partial_x^2)u=f$ with a very irregular forcing $f$ and only mildly regular coefficients $a$. This is motivated by stochastic differential equations, where $f$ is random, and quasilinear equations, where $a$ is a (nonlinear) function of $u$.
Below a certain threshold for the regularity of $f$ and $a$ (on the Hölder scale), giving even a sense to this equation requires a renormalization. In the framework of the above setting, we present recent ideas from the area of stochastic differential equations (Lyons' rough path, Gubinelli's controlled rough paths, Hairer's regularity structures) that allow to build a solution theory. We make a connection with Safonov's approach to Schauder theory.
This is based on joint work with H. Weber, J. Sauer, and S. Smith.[-]
We are interested in parabolic differential equations $(\partial_t-a\partial_x^2)u=f$ with a very irregular forcing $f$ and only mildly regular coefficients $a$. This is motivated by stochastic differential equations, where $f$ is random, and quasilinear equations, where $a$ is a (nonlinear) function of $u$.
Below a certain threshold for the regularity of $f$ and $a$ (on the Hölder scale), giving even a sense to this equation requires a ...[+]

60H15 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A new commutator method for averaging lemmas (part 1) - Jabin, Pierre-Emmanuel (Auteur de la Conférence) | CIRM H

Virtualconference

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.[-]
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...[+]

35Q83 ; 35L65 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A new commutator method for averaging lemmas (part 3) - Jabin, Pierre-Emmanuel (Auteur de la Conférence) | CIRM H

Virtualconference

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.[-]
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...[+]

35Q83 ; 35L65 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lyapunov exponents of the Navier-Stokes equations - Blumenthal, Alex (Auteur de la Conférence) | CIRM H

Multi angle

An early motivation of smooth ergodic theory was to provide a mathematical account for the unpredictable, chaotic behavior of real-world fluids. While many interesting questions remain, in the last 25 years significant progress has been achieved in understanding models of fluid mechanics, e.g., the Navier-Stokes equations, in the presence of stochastic driving. Noise is natural for modeling purposes, and certain kinds of noise have a regularizing effect on asymptotic statistics. These kinds of noise provide an effective technical tool for rendering tractable otherwise inaccessible results on chaotic regimes, e.g., positivity of Lyapunov exponents and the presence of a strange attractor supporting a physical (SRB) measure. In this talk I will describe some of my work in this vein, including a recent result with Jacob Bedrossian and Sam Punshon-Smith providing positive Lyapunov exponents for f inite-dimensional (a.k.a. Galerkin) truncations of the Navier-Stokes equations.[-]
An early motivation of smooth ergodic theory was to provide a mathematical account for the unpredictable, chaotic behavior of real-world fluids. While many interesting questions remain, in the last 25 years significant progress has been achieved in understanding models of fluid mechanics, e.g., the Navier-Stokes equations, in the presence of stochastic driving. Noise is natural for modeling purposes, and certain kinds of noise have a re...[+]

37H15 ; 35H10 ; 37D25 ; 58J65 ; 35B65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A new commutator method for averaging lemmas (part 2) - Jabin, Pierre-Emmanuel (Auteur de la Conférence) | CIRM H

Virtualconference

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.[-]
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...[+]

35Q83 ; 35L65 ; 35B65

Sélection Signaler une erreur