En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35K55 16 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Global existence of classical solutions is investigated for a chemotaxis model with local sensing for a general class of mobility functions. In contrast to the classical Keller-Segel chemotaxis model, no finite blowup occurs but the formation of singularities is possibly shifted to infinity. In addition, some classes of mobility functions for which solutions are bounded are identified. Joint works with Jie Jiang, Wuhan et Yanyan Zhang, Shanghai.

35K51 ; 35K55 ; 35B40 ; 35A01

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Suppression of chemotactic blow-up by buoyancy - Yao, Yao (Auteur de la Conférence) | CIRM H

Multi angle

Chemotactic blow up in the context of the Keller-Segel equation is an extensively studied phenomenon. In recent years, it has been shown that when the Keller-Segel equation is coupled with passive advection, blow-up can be prevented if the flow possesses mixing or diffusion-enhancing properties, and its amplitude is sufficiently strong. In this talk, we consider the Keller-Segel equation coupled with an active advection, which is an incompressible flow obeying Darcy's law for incompressible porous media equation and driven by buoyancy force. We prove that in contrast with passive advection, this active advection coupling is capable of suppressing chemotactic blow up at arbitrary small coupling strength: namely, the system always has globally regular solutions. (Joint work with Zhongtian Hu and Alexander Kiselev).[-]
Chemotactic blow up in the context of the Keller-Segel equation is an extensively studied phenomenon. In recent years, it has been shown that when the Keller-Segel equation is coupled with passive advection, blow-up can be prevented if the flow possesses mixing or diffusion-enhancing properties, and its amplitude is sufficiently strong. In this talk, we consider the Keller-Segel equation coupled with an active advection, which is an inc...[+]

35B35 ; 35K55 ; 76B03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modelled by nonlinear diffusion, and long-range attraction modelled by nonlocal interaction. In this course, I will discuss several qualitative properties of its steady states and dynamical solutions. Using continuous Steiner symmetrization techniques, we show that all steady states are radially symmetric up to a translation. (joint with Carrillo, Hittmeir and Volzone). Once the symmetry is known, we further investigate whether steady states are unique within the radial class, and show that for a given mass, the uniqueness/non-uniqueness of steady states is determined by the power of the degenerate diffusion, with the critical power being m = 2. (joint with Delgadino and Yan). I'll also discuss some properties on the long-time behavior of aggregation-diffusion equation with linear diffusion (joint with Carrillo, Gomez-Castro and Zeng), and global-wellposedness if Keller-Segel equation when coupled with an active advection term (joint with Hu and Kiselev).[-]
The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modelled by nonlinear diffusion, and long-range attraction modelled by nonlocal interaction. In this course, I will discuss several qualitative properties of its steady states and dynamical solutions. Using continuous Steiner symmetrization techniques, we show that all steady ...[+]

35B35 ; 35K55 ; 76B03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral analysis.[-]
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral ...[+]

82C40 ; 35H10 ; 35P15 ; 35Q84 ; 35R09 ; 47G20 ; 82C21 ; 82D10 ; 82D37 ; 76P05 ; 35K65 ; 35Q84 ; 46E35 ; 35K55 ; 35Q70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modelled by nonlinear diffusion, and long-range attraction modelled by nonlocal interaction. In this course, I will discuss several qualitative properties of its steady states and dynamical solutions. Using continuous Steiner symmetrization techniques, we show that all steady states are radially symmetric up to a translation. (joint with Carrillo, Hittmeir and Volzone). Once the symmetry is known, we further investigate whether steady states are unique within the radial class, and show that for a given mass, the uniqueness/non-uniqueness of steady states is determined by the power of the degenerate diffusion, with the critical power being m = 2. (joint with Delgadino and Yan). I'll also discuss some properties on the long-time behavior of aggregation-diffusion equation with linear diffusion (joint with Carrillo, Gomez-Castro and Zeng), and global-wellposedness if Keller-Segel equation when coupled with an active advection term (joint with Hu and Kiselev).[-]
The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modelled by nonlinear diffusion, and long-range attraction modelled by nonlocal interaction. In this course, I will discuss several qualitative properties of its steady states and dynamical solutions. Using continuous Steiner symmetrization techniques, we show that all steady ...[+]

35B35 ; 35K55 ; 76B03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider parabolic equations of the form $u_t = u_{xx} + f (u)$ on the real line. Unlike their counterparts on bounded intervals, these equations admit bounded solutions whose large-time dynamics is not governed by steady states. Even with respect to the locally uniform convergence, the solutions may not be quasiconvergent, that is, their omega-limit sets may contain nonstationary solutions.
We will start this lecture series by exhibiting several examples of non-quasiconvergent solutions, discussing also some entire solutions appearing in their omega-limit sets. Minimal assumptions on the nonlinearity are needed in the examples, which shows that non-quasiconvergent solutions occur very frequently in this type of equations. Our next goal will be to identify specific classes of initial data that lead to quasiconvergent solutions. These include localized initial data (joint work with Hiroshi Matano) and front-like initial data. Finally, in the last part of these lectures, we take a more global look at the solutions with such initial data. Employing propagating terraces, or stacked families of traveling fronts, we describe their entire spatial profile at large times.[-]
We consider parabolic equations of the form $u_t = u_{xx} + f (u)$ on the real line. Unlike their counterparts on bounded intervals, these equations admit bounded solutions whose large-time dynamics is not governed by steady states. Even with respect to the locally uniform convergence, the solutions may not be quasiconvergent, that is, their omega-limit sets may contain nonstationary solutions.
We will start this lecture series by exhibiting ...[+]

35B40 ; 35K15 ; 35K55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will report on some of the progress made by the author and collaborators on the topic of nonlinear diffusion equations involving long distance interactions in the form of fractional Laplacian operators. The nonlinearities are of the following types: porous medium, fast diffusion or p-Laplacian. Results cover well-posedness, regularity, free bouncadaries, asymptotics, extinction, and others. Differences with standard diffusion have been specially examined.[-]
In this talk I will report on some of the progress made by the author and collaborators on the topic of nonlinear diffusion equations involving long distance interactions in the form of fractional Laplacian operators. The nonlinearities are of the following types: porous medium, fast diffusion or p-Laplacian. Results cover well-posedness, regularity, free bouncadaries, asymptotics, extinction, and others. Differences with standard diffusion have ...[+]

26A33 ; 35K55 ; 35K65 ; 35S10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations[-]
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...[+]

49K20 ; 49N70 ; 35F21 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations[-]
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...[+]

49K20 ; 49N70 ; 35F21 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations[-]
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...[+]

49K20 ; 49N70 ; 35F21 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

Sélection Signaler une erreur