Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
In this talk we will discuss a new geodesic beam approach to understanding eigenfunction concentration. We characterize the features that cause an eigenfunction to saturate the standard supremum bounds in terms of the distribution of $L^{2}$ mass along geodesic tubes emanating from a point. We also show that the phenomena behind extreme supremum norm growth is identical to that underlying extreme growth of eigenfunctions when averaged along submanifolds. Using the description of concentration, we obtain quantitative improvements on the known bounds in a wide variety of settings.
[-]
In this talk we will discuss a new geodesic beam approach to understanding eigenfunction concentration. We characterize the features that cause an eigenfunction to saturate the standard supremum bounds in terms of the distribution of $L^{2}$ mass along geodesic tubes emanating from a point. We also show that the phenomena behind extreme supremum norm growth is identical to that underlying extreme growth of eigenfunctions when averaged along ...
[+]
35P20 ; 58J50 ; 53C22 ; 53C40 ; 53C21
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties of completely integrable and chaotic systems.
[-]
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties ...
[+]
81Q50 ; 37N20 ; 35P20 ; 58J51 ; 58J50 ; 37D40
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties of completely integrable and chaotic systems.
[-]
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties ...
[+]
81Q50 ; 37N20 ; 35P20 ; 58J51 ; 58J50 ; 37D40
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.
Based on joint works with F. Dalmao, D. Marinucci, I. Nourdin, M. Rossi and I. Wigman.
[-]
I will discuss second order results for the length of nodal sets and the number of phase singularities associated with Gaussian random Laplace eigenfunctions, both on compact manifolds (the flat torus) and on subset of the plane. I will mainly focus on 'cancellation phenomena' for nodal variances in the high-frequency limit, with specific emphasis on central and non-central second order results.
Based on joint works with F. Dalmao, D. ...
[+]
60G60 ; 60D05 ; 60B10 ; 58J50 ; 35P20 ; 60F05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We discuss joint work with Doug Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda. Consider the Neumann boundary value problem for the operator $L = divA\nabla + V$ on a Lipschitz domain $\Omega$ and, more generally, on manifolds with and without boundary. The eigenfunctions of $L$ are often localized, as a result of disorder of the potential $V$, the matrix of coefficients $A$, irregularities of the boundary, or all of the above. In earlier work, Filoche and Mayboroda introduced the function $u$ solving $Lu = 1$, and showed numerically that it strongly reflects this localization. In this talk, we deepen the connection between the eigenfunctions and this landscape function $u$ by proving that its reciprocal $1/u$ acts as an effective potential. The effective potential governs the exponential decay of the eigenfunctions of the system and delivers information on the distribution of eigenvalues near the bottom of the spectrum.
[-]
We discuss joint work with Doug Arnold, Guy David, Marcel Filoche and Svitlana Mayboroda. Consider the Neumann boundary value problem for the operator $L = divA\nabla + V$ on a Lipschitz domain $\Omega$ and, more generally, on manifolds with and without boundary. The eigenfunctions of $L$ are often localized, as a result of disorder of the potential $V$, the matrix of coefficients $A$, irregularities of the boundary, or all of the above. In ...
[+]
47A75 ; 81Vxx ; 81Q10 ; 35P20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Laplace–Beltrami operator in the curved Möbius strip is investigated in the limit when the width of the strip tends to zero. By establishing a norm-resolvent convergence, it is shown that spectral properties of the operator are approximated well by an unconventional flat model whose spectrum can be computed explicitly in terms of Mathieu functions. Contrary to the traditional flat Möbius strip, our effective model contains a geometric potential. A comparison of the three models is made and analytical results are accompanied by numerical computations.
[-]
The Laplace–Beltrami operator in the curved Möbius strip is investigated in the limit when the width of the strip tends to zero. By establishing a norm-resolvent convergence, it is shown that spectral properties of the operator are approximated well by an unconventional flat model whose spectrum can be computed explicitly in terms of Mathieu functions. Contrary to the traditional flat Möbius strip, our effective model contains a geometric ...
[+]
35P20 ; 58J50 ; 81Q10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
How close is the Dirichlet-to-Neumann map to the square root of the corresponding boundary Laplacian? This question has been actively investigated in recent years. Somewhat surprisingly, a lot of techniques involved can be traced back to a newly rediscovered manuscript of Lars Hörmander from the 1950s. We present Hörmander's approach and its applications, with an emphasis on eigenvalue estimates and spectral asymptotics. The talk is based on a joint work with Alexandre Girouard, Mikhail Karpukhin and Michael Levitin
[-]
How close is the Dirichlet-to-Neumann map to the square root of the corresponding boundary Laplacian? This question has been actively investigated in recent years. Somewhat surprisingly, a lot of techniques involved can be traced back to a newly rediscovered manuscript of Lars Hörmander from the 1950s. We present Hörmander's approach and its applications, with an emphasis on eigenvalue estimates and spectral asymptotics. The talk is based on a ...
[+]
58J50 ; 35P20