En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q30 21 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​I will discuss recent developments concerning the non-uniqueness of distributional solutions to the Navier-Stokes equation.

35Q30 ; 76D05 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mathematical analysis of geophysical models - Titi, Edriss S. (Auteur de la Conférence) | CIRM H

Multi angle

In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description based only on fundamental physical principles, which are called the 'Primitive Equations', is often prohibitively expensive computationally, and hard to study analytically. In these introductory lectures, aimed toward graduate students and postdocs, I will survey the mathematical theory of the 2D and 3D Navier-Stokes and Euler equations, and stress the main obstacles in proving the global regularity for the 3D case, and the computational challenge in their direct numerical simulations. In addition, I will emphasize the issues facing the turbulence community in their turbulence closure models. However, taking advantage of certain geophysical balances and situations, such as geostrophic balance and the shallowness of the ocean and atmosphere, I will show how geophysicists derive more simplified models which are easier to study analytically. In particular, I will prove the global regularity for 3D planetary geophysical models and the Primitive equations of large scale oceanic and atmospheric dynamics with various kinds of anisotropic viscosity and diffusion. Moreover, I will also show that for certain class of initial data the solutions of the inviscid 2D and 3D Primitive Equations blowup (develop a singularity).[-]
In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description ...[+]

35Q86 ; 35Q35 ; 35Q93 ; 76D05 ; 35Q30 ; 86A05 ; 86A10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Recent results on the Triple Deck model - Gérard-Varet, David (Auteur de la Conférence) | CIRM H

Multi angle

Many hydrodynamic instabilities take place near a solid boundary at high Reynolds number. This reflects into the mathematical theory of the classical Prandtl model for the boundary layer: it exhibits high frequency instabilities, limiting its well-posedness to infinite regularity (Gevrey) spaces. After reviewing shortly this fact, we will turn to the Triple Deck model, a refinement of the Prandtl system that is commonly accepted to be more stable. We will show that this is actually wrong, and that the recent result of analytic well-posedness obtained by Iyer and Vicol is more or less optimal. This is based on joint work with Helge Dietert.[-]
Many hydrodynamic instabilities take place near a solid boundary at high Reynolds number. This reflects into the mathematical theory of the classical Prandtl model for the boundary layer: it exhibits high frequency instabilities, limiting its well-posedness to infinite regularity (Gevrey) spaces. After reviewing shortly this fact, we will turn to the Triple Deck model, a refinement of the Prandtl system that is commonly accepted to be more ...[+]

35Q30 ; 35Q35 ; 76D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the inviscid limit for the Navier-Stokes equations - Kukavica, Igor (Auteur de la Conférence) | CIRM H

Virtualconference

We address a system of partial differential equations modeling a motion of an elastic body inside an incompressible fluid. The fluid is modeled by the incompressible Navier-Stokes equations while the structure is represented by the wave equation. We will review the local for large and global existence theorems and present the most most recent global existence result, which is joint with A. Tuffaha and W. Ozanski.

35Q30 ; 76D05 ; 35R35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the Navier-Stokes equations on surfaces - Simonett, Gieri (Auteur de la Conférence) | CIRM H

Multi angle

I will consider the motion of an incompressible viscous fluid on compact surfaces without boundary. Local in time well-posedness is established in the framework of $L_{p}$-$L_{q}$ maximal regularity for initial values in critical spaces. It will be shown that the set of equilibria consists exactly of the Killing vector fields. Each equilibrium is stable and any solution starting close to an equilibrium converges at an exponential rate to a (possibly different) equilibrium. In case the surface is two-dimensional, it will be shown that any solution with divergence free initial value in $L_{2}$ exists globally and converges to an equilibrium.[-]
I will consider the motion of an incompressible viscous fluid on compact surfaces without boundary. Local in time well-posedness is established in the framework of $L_{p}$-$L_{q}$ maximal regularity for initial values in critical spaces. It will be shown that the set of equilibria consists exactly of the Killing vector fields. Each equilibrium is stable and any solution starting close to an equilibrium converges at an exponential rate to a ...[+]

35Q35 ; 35Q30 ; 35B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We provide a new boundary estimate on the vorticity for the incompressible Navier-Stokes equation endowed with no-slip boundary condition. The estimate is rescalable through the inviscid limit. It provides a control on the layer separation at the inviscid Kato double limit, which is consistent with the Layer separation predictions via convex integration.

35B40 ; 35Q30 ; 76D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy identity and that existence of a weak solution can be proved. Some of these models will be detailed.
The second result is perhaps more important for applications. It provides understanding on the fact the the growth rate of linear instabilities of the initial (non reduced) model is lower bounded by the growth rate of linear instabilities of the reduced model.
This work has been done with Rémy Sart.[-]
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy ...[+]

76W05 ; 35L65 ; 65M60 ; 35Q30

Sélection Signaler une erreur