En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q30 23 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mathematical analysis of geophysical models - Titi, Edriss S. (Author of the conference) | CIRM H

Multi angle

In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description based only on fundamental physical principles, which are called the 'Primitive Equations', is often prohibitively expensive computationally, and hard to study analytically. In these introductory lectures, aimed toward graduate students and postdocs, I will survey the mathematical theory of the 2D and 3D Navier-Stokes and Euler equations, and stress the main obstacles in proving the global regularity for the 3D case, and the computational challenge in their direct numerical simulations. In addition, I will emphasize the issues facing the turbulence community in their turbulence closure models. However, taking advantage of certain geophysical balances and situations, such as geostrophic balance and the shallowness of the ocean and atmosphere, I will show how geophysicists derive more simplified models which are easier to study analytically. In particular, I will prove the global regularity for 3D planetary geophysical models and the Primitive equations of large scale oceanic and atmospheric dynamics with various kinds of anisotropic viscosity and diffusion. Moreover, I will also show that for certain class of initial data the solutions of the inviscid 2D and 3D Primitive Equations blowup (develop a singularity).[-]
In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description ...[+]

35Q86 ; 35Q35 ; 35Q93 ; 76D05 ; 35Q30 ; 86A05 ; 86A10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Recent results on the Triple Deck model - Gérard-Varet, David (Author of the conference) | CIRM H

Multi angle

Many hydrodynamic instabilities take place near a solid boundary at high Reynolds number. This reflects into the mathematical theory of the classical Prandtl model for the boundary layer: it exhibits high frequency instabilities, limiting its well-posedness to infinite regularity (Gevrey) spaces. After reviewing shortly this fact, we will turn to the Triple Deck model, a refinement of the Prandtl system that is commonly accepted to be more stable. We will show that this is actually wrong, and that the recent result of analytic well-posedness obtained by Iyer and Vicol is more or less optimal. This is based on joint work with Helge Dietert.[-]
Many hydrodynamic instabilities take place near a solid boundary at high Reynolds number. This reflects into the mathematical theory of the classical Prandtl model for the boundary layer: it exhibits high frequency instabilities, limiting its well-posedness to infinite regularity (Gevrey) spaces. After reviewing shortly this fact, we will turn to the Triple Deck model, a refinement of the Prandtl system that is commonly accepted to be more ...[+]

35Q30 ; 35Q35 ; 76D10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The long way of a viscous vortex dipole - Gallay, Thierry (Author of the conference) | CIRM H

Multi angle

As a toy model for the viscous interaction of planar vortices, we consider the solution of the two-dimensional Navier-Stokes equation with singular initial data corresponding to a pair of point vortices with opposite circulations. In the large Reynolds number regime, we construct an approximate solution which takes into account the deformation of the stream lines due to vortex interactions, as well as the corrections to the translation speed of the dipole due to finite size effects. Using energy estimates based on Arnold's variational characterization of equilibria for the Euler equation, we then show that our approximation remains valid over a very long time interval, if the viscosity is sufficiently small. This is a joint work with Michele Dolce (Lausanne), which relies on previous studies in collaboration with Vladimir Sverak (Minneapolis).[-]
As a toy model for the viscous interaction of planar vortices, we consider the solution of the two-dimensional Navier-Stokes equation with singular initial data corresponding to a pair of point vortices with opposite circulations. In the large Reynolds number regime, we construct an approximate solution which takes into account the deformation of the stream lines due to vortex interactions, as well as the corrections to the translation speed of ...[+]

35Q30 ; 76D05 ; 76D17 ; 35C20 ; 35B35

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will introduce nonlinear stability results of 2-D Couette flow for the NavierStokes equations at high Reynolds number. To achieve the optimal stability threshold, two kinds of physical effects including inviscid damping and enhanced dissipation play a crucial role. This talk is based on three joint papers

35Q30 ; 76E30 ; 76F06

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy identity and that existence of a weak solution can be proved. Some of these models will be detailed.
The second result is perhaps more important for applications. It provides understanding on the fact the the growth rate of linear instabilities of the initial (non reduced) model is lower bounded by the growth rate of linear instabilities of the reduced model.
This work has been done with Rémy Sart.[-]
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy ...[+]

76W05 ; 35L65 ; 65M60 ; 35Q30

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stochastic solutions of 2D fluids​ - Flandoli, Franco (Author of the conference) | CIRM H

Multi angle

We revise recent contributions to 2D Euler and Navier-Stokes equations with and without noise, but always in the case of stochastic solutions. The role of white noise initial conditions will be stressed and related to some questions about turbulence.

35Q30 ; 35Q31 ; 60H15 ; 60H40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
It is known that in 3D exterior domains Ω with the compact smooth boundary $\partial \Omega$, two spaces $X^{r}_{har}\left ( \Omega \right )$ and $V^{r}_{har}\left ( \Omega \right )$ of $L^{r}$-harmonic vector fields $h$ with $h\cdot v\mid _{\partial \Omega }= 0$ and $h\times v\mid _{\partial \Omega }= 0$ are both of finite dimensions, where $v$ denotes the unit outward normal to $\partial \Omega$. We prove that for every $L^{r}$-vector field $u$, there exist $h\in X^{r}_{har}\left ( \Omega \right )$, $w\in H^{1,r}\left ( \Omega \right )^{3}$ with div $w= 0$ and $p\in H^{1,r}\left ( \Omega \right )$ such that $u$ is uniquely decomposed as $u= h$ + rot $w$ + $\bigtriangledown p$.
On the other hand, if for the given $L^{r}$-vector field $u$ we choose its harmonic part $h$ from $V^{r}_{har}\left ( \Omega \right )$, then we have a similar decomposition to above, while the unique expression of $u$ holds only for $1< r< 3$. Furthermore, the choice of $p$ in $H^{1,r}\left ( \Omega \right )$ is determined in accordance with the threshold $r= 3/2$.
Our result is based on the joint work with Matthias Hieber, Anton Seyferd (TU Darmstadt), Senjo Shimizu (Kyoto Univ.) and Taku Yanagisawa (Nara Women Univ.).[-]
It is known that in 3D exterior domains Ω with the compact smooth boundary $\partial \Omega$, two spaces $X^{r}_{har}\left ( \Omega \right )$ and $V^{r}_{har}\left ( \Omega \right )$ of $L^{r}$-harmonic vector fields $h$ with $h\cdot v\mid _{\partial \Omega }= 0$ and $h\times v\mid _{\partial \Omega }= 0$ are both of finite dimensions, where $v$ denotes the unit outward normal to $\partial \Omega$. We prove that for every $L^{r}$-vector field $u...[+]

35B45 ; 35J25 ; 35Q30 ; 58A10 ; 35A25

Bookmarks Report an error