En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q35 31 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A one-dimensional model for suspension flows - Perrin, Charlotte (Auteur de la Conférence) | CIRM H

Multi angle

We will present in this talk a mathematical model for a mixture composed by solid particles immersed in a viscous liquid. In a dense regime (high concentration of solid particles), the lubrication effects are predominant in the dynamics. Our goal is to study mathematically a minimal effective model, based on compressible Navier-Stokes equations, which take into account lubrication effects via a singular dissipation term. We will also consider the regime where the viscosity of the interstitial fluid tends to 0.[-]
We will present in this talk a mathematical model for a mixture composed by solid particles immersed in a viscous liquid. In a dense regime (high concentration of solid particles), the lubrication effects are predominant in the dynamics. Our goal is to study mathematically a minimal effective model, based on compressible Navier-Stokes equations, which take into account lubrication effects via a singular dissipation term. We will also consider ...[+]

35Q35 ; 35B25 ; 76T20 ; 90B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function space BM O and show maximal regularity for the initial value problem of the Stokes equations ([4]). As an application, we consider the local well-posedness issue for the MHD equations with the Hall effect (cf. [2]). This talk is based on a joint work with Senjo Shimizu (Kyoto University).[-]
We consider maximal regularity for the heat equation based on the endpoint function class BMO (the class of bounded mean oscillation). It is well known that BM O(Rn) is the endpoint class for solving the initial value problem for the incompressible Navier-Stokes equations and it is well suitable for solving such a problem ([3]) rather than the end-point homogeneous Besov spaces (cf. [1], [5]). First we recall basic properties of the function ...[+]

35K55 ; 35K45 ; 35Q35 ; 35Q60 ; 42B37

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We first summarize the derivation of viscoelastic (rate-type) fluids with stress diffusion that generates the models that are compatible with the second law of thermodynamics and where no approximation/reduction takes place. The approach is based on the concept of natural configuration that splits the total response between the current and initial configuration into the purely elastic and dissipative part. Then we restrict ourselves to the class of fluids where elastic response is purely spherical. For such class of fluids we then provide a mathematical theory that, in particular, includes the long-time and large-data existence of weak solution for suitable initial and boundary value problems. This is a joint work with Miroslav Bulicek, Vit Prusa and Endre Suli.[-]
We first summarize the derivation of viscoelastic (rate-type) fluids with stress diffusion that generates the models that are compatible with the second law of thermodynamics and where no approximation/reduction takes place. The approach is based on the concept of natural configuration that splits the total response between the current and initial configuration into the purely elastic and dissipative part. Then we restrict ourselves to the class ...[+]

76A10 ; 80A10 ; 35D30 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An asymptotic regime for the Vlasov-Poisson system - Miot, Evelyne (Auteur de la Conférence) | CIRM H

Multi angle

We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we provide a first analysis of the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density with a moving point charge.

82D10 ; 82C40 ; 35Q35 ; 35Q83 ; 35Q31

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

From Vlasov-Poisson to Euler in the gyrokinetic limit - Miot, Evelyne (Auteur de la Conférence) | CIRM H

Multi angle

We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by a Dirac mass in the phase-space.[-]
We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by ...[+]

76X05 ; 82C21 ; 35Q35 ; 35Q83 ; 35Q60 ; 82D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Following the seminal work by Benamou and Brenier on the time continuous formulation of the optimal transport problem, we show how optimal transport techniques can be used in various areas, ranging from "the reconstruction problem" cosmology to a problem of volatility calibration in finance.

65K10 ; 85A30 ; 85A40 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in vacuum. We shall highlight the places where tools in harmonic analysis play a key role, and present a few open problems.[-]
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in ...[+]

35Q30 ; 76D05 ; 35Q35 ; 76D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will present a recent study on traveling waves solutions to a 1D biphasic Navier-Stokes system coupling compressible and incompressible phases. With this original fluid equations, we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, collective motion, etc.). I will first exhibit explicit partially congested propagation fronts and show that these solutions can be approached by profiles which are solutions to a singular compressible Navier-Stokes system. The last part of the talk will be dedicated to the analysis of the stability of the approximate profiles. This is a joint work with Anne-Laure Dalibard.[-]
In this talk, I will present a recent study on traveling waves solutions to a 1D biphasic Navier-Stokes system coupling compressible and incompressible phases. With this original fluid equations, we intend to model congestion (or saturation) phenomena in heterogeneous flows (mixtures, collective motion, etc.). I will first exhibit explicit partially congested propagation fronts and show that these solutions can be approached by profiles which ...[+]

35Q35 ; 35L67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A common way to prove global well-posedness of free boundary problems for incompressible viscous fluids is to transform the equations governing the fluid motion to a fixed domain with respect to the time variable. An elegant and physically reasonable way to do this is to introduce Lagrangian coordinates. These coordinates are given by the transformation rule

$x(t)=\xi +\int_{0}^{t}u(\tau ,\xi ) d\tau $

where $u(\tau ,\xi )$ is the velocity vector of the fluid particle at time $\tau$ that initially started at position $\xi$. The variable $x(t)$ is then the so-called Eulerian variable and belongs to the coordinate frame where the domain that is occupied by the fluid moves with time.The variable $\xi$ is the Lagrangian variable that belongs to time fixed variables. In these coordinates the fluid only occupies the domain $\Omega_{0}$ that is occupied at initial time t = 0.
To prove a global existence result for such a problem, it is important to guarantee the invertibility of this coordinate transform globally in time. By virtue of the inverse function theorem, this is the case if

$\nabla_{\xi }x(t)=Id+\int_{0}^{t}\nabla_{\xi }u(\tau ,\xi )d\tau $

is invertible. By using a Neumann series argument, this is invertible, if the integral termon the right-hand side is small in $L^{\infty }(\Omega _{0})$. Thus, it is important to have a global control of this $L^{1}$-time integral with values in $L^{\infty }(\Omega _{0})$. If the domain is bounded, this can be controlled by exponential decay properties of the corresponding semigroup operators that describe the motion of the linearized fluid equation. On unbounded domains, however, these decay properties are not true anymore. While there are technical possibilities to fix these problems if the boundary is compact, these fixes cease to work if the boundary is non-compact.
As a model problem, we consider the case where $\Omega _{0}$ is the upper half-space. To obtain estimates of the $L^{1}$-time integral we use the theorem of Da Prato and Grisvard of 1975 about maximal regularity in real interpolation spaces. The need of global in timecontrol, however, makes it necessary to work out a version of this theorem that involves “homogeneous” estimates only (this was also done in the book of Markus Haase). In the talk, we show how to obtain this global Lagrangian coordinate transform from this theorem of Da Prato and Grisvard.[-]
A common way to prove global well-posedness of free boundary problems for incompressible viscous fluids is to transform the equations governing the fluid motion to a fixed domain with respect to the time variable. An elegant and physically reasonable way to do this is to introduce Lagrangian coordinates. These coordinates are given by the transformation rule

$x(t)=\xi +\int_{0}^{t}u(\tau ,\xi ) d\tau $

where $u(\tau ,\xi )$ is ...[+]

35Q35 ; 76D05

Sélection Signaler une erreur