En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37K10 11 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Extreme superposition: rogue waves of infinite order - Bilman, Deniz (Auteur de la Conférence) | CIRM H

Multi angle

The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and near-field limit of a broad class of solutions of the same equation. In this talk, we will present several recent results on the emergence of these special solutions along with their interesting asymptotic and exact properties. Notably, these solutions exhibit anomalously slow temporaldecay and are connected to the third Painlev´e equation. Finally, we will extend the emergence of rogue waves of infinite order to the first several flows of the AKNS hierarchy — allowing for arbitrarily many simultaneous flows — and report on recent work regarding their space-time asymptotic behavior under a general flow from the hierarchy.[-]
The focusing nonlinear Schrödinger equation serves as a universal model for the amplitude of a wave packet in a general one-dimensional weakly-nonlinear and strongly-dispersive setting that includes water waves and nonlinear optics as special cases. Rogue waves of infinite order are a novel family of solutions of the focusing nonlinear Schr¨odinger equation that emerge universally in a particular asymptotic regime involving a large-amplitude and ...[+]

35Q55 ; 35Q15 ; 35Q51 ; 37K10 ; 37K15 ; 37K40 ; 34M55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We prove that the solution to the Benjamin-Ono equation on the line, with initial data given by minus a soliton, exhibits scattering in infinite time. Our approach relies on an explicit formula for solutions with rational initial data in L2 having only simple poles. This formula is expressed as a ratio of determinants involving contour integrals. Additionally, we develop some spectral properties of the Lax operator associated with the Benjamin-Ono equation. This work is in collaboration with Elliot Blackstone, Patrick Gérard, and Peter D. Miller[-]
We prove that the solution to the Benjamin-Ono equation on the line, with initial data given by minus a soliton, exhibits scattering in infinite time. Our approach relies on an explicit formula for solutions with rational initial data in L2 having only simple poles. This formula is expressed as a ratio of determinants involving contour integrals. Additionally, we develop some spectral properties of the Lax operator associated with the B...[+]

35C05 ; 35Q51 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Continuum Calogero–Moser models - Laurens, Thierry (Auteur de la Conférence) | CIRM H

Multi angle

The focusing Continuum Calogero–Moser (CCM) equation is a completely integrable PDE that describes a continuum limit of a particle gas interacting pairwise through an inverse square potential. This system is well-posed in the scaling-critical space L2 below the mass of the soliton, but above this threshold there are solutions that blow up in finite time. In this talk, we will discuss some new and existing results about solutions below the soliton mass threshold. This is based on joint work with Rowan Killip and Monica Visan.[-]
The focusing Continuum Calogero–Moser (CCM) equation is a completely integrable PDE that describes a continuum limit of a particle gas interacting pairwise through an inverse square potential. This system is well-posed in the scaling-critical space L2 below the mass of the soliton, but above this threshold there are solutions that blow up in finite time. In this talk, we will discuss some new and existing results about solutions below the ...[+]

35Q55 ; 37K10 ; 35Q70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also present and compare implementations of this algorithm in Maple and SageMath. This is based on a joint work with Mireille Bousquet-Mélou and Baptiste Louf.[-]
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also ...[+]

05A15 ; 82B20 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the Hamiltonian with Schur polynomials, this is equivalent to proving (1) the concentration of profiles of Young diagrams around a limit shape and (2) their global Gaussian fluctuations for Schur measures with symbol $v : T \to R$ on the unit circle $T$. We identify the emergent objects with the push-forward along $v$ of (1) the uniform measure on $T$ and (2) $H^{1/2}$ noise on $T$. Our proofs exploit the integrability of the model as described by Nazarov-Sklyanin (2013). As time permits, we discuss structural connections to the theory of the topological recursion.[-]
After Fourier series, the quantum Hopf-Burgers equation $v_t +vv_x = 0$ with periodic boundary conditions is equivalent to a system of coupled quantum harmonic oscillators, which may be prepared in Glauber's coherent states as initial conditions. Sending the displacement of each oscillator to infinity at the same rate, we (1) confirm and (2) determine corrections to the quantum-classical correspondence principle. After diagonalizing the ...[+]

05E10 ; 20G43 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed in the talk.[-]
In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed ...[+]

37K10 ; 35C07 ; 35C08 ; 35Q53 ; 35Q55 ; 76B15 ; 76Fxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Solitons vs collapses - Kuznetsov, Evgenii (Auteur de la Conférence) | CIRM H

Multi angle

This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrodinger equation, the ZK equation and the three-wave system is used to show how the boundedness of the Hamiltonian H, and hence the stability of the soliton minimizing H can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
This work was supported by the Russian Science Foundation (project no. 14-22-00174).[-]
This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation ...[+]

35Q53 ; 35Q55 ; 37K10 ; 37N10 ; 76B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable solution procedure, as well as computational simulations to see dynamics of correlation functions in action.[-]
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable ...[+]

60B20 ; 60K35 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable solution procedure, as well as computational simulations to see dynamics of correlation functions in action.[-]
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable ...[+]

60B20 ; 60K35 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hodge-GUE Correspondence - Yang, Di (Auteur de la Conférence) | CIRM H

Multi angle

An explicit relationship between certain cubic Hodge integrals on the Deligne–Mumford moduli space of stable algebraic curves and connected GUE correlators of even valencies, called the Hodge–GUE correspondence, was recently discovered. In this talk, we prove this correspondence by using the Virasoro constraints and by deriving the Dubrovin–Zhang loop equation. The talk is based on a series of joint work with Boris Dubrovin, Si-Qi Liu and Youjin Zhang.[-]
An explicit relationship between certain cubic Hodge integrals on the Deligne–Mumford moduli space of stable algebraic curves and connected GUE correlators of even valencies, called the Hodge–GUE correspondence, was recently discovered. In this talk, we prove this correspondence by using the Virasoro constraints and by deriving the Dubrovin–Zhang loop equation. The talk is based on a series of joint work with Boris Dubrovin, Si-Qi Liu and Youjin ...[+]

53D45 ; 37K10 ; 15B52

Sélection Signaler une erreur