En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 42C15 11 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Geometry and topology of spaces of structured matrices - Needham, Tom (Auteur de la Conférence) | CIRM H

Multi angle

A finite unit norm tight frame (FUNTF) is a spanning set of unit vectors in a finite-dimensional Hilbert space such that the spectrum of singular values of an associated operator is constant. In signal processing applications, it is desirable to use FUNTFs to encode signals, as such representations are proven to be optimally robust to noise. This naturally gives rise to questions about the geometry and topology of the space of FUNTFs. For example, the conjecture that every space of FUNTFs is connected was open for 15 years, and slight variants of this problem still remain open. I will discuss recent work with Clayton Shonkwiler, where we answer several questions about random matrix theory and optimization in spaces of structured matrices, using tools from symplectic geometry and geometric invariant theory.[-]
A finite unit norm tight frame (FUNTF) is a spanning set of unit vectors in a finite-dimensional Hilbert space such that the spectrum of singular values of an associated operator is constant. In signal processing applications, it is desirable to use FUNTFs to encode signals, as such representations are proven to be optimally robust to noise. This naturally gives rise to questions about the geometry and topology of the space of FUNTFs. For ...[+]

42C15 ; 53D20 ; 90C26

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Wavelets, shearlets and geometric frames - Part 1 - Grohs, Philipp (Auteur de la Conférence) | CIRM H

Multi angle

In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While wavelets are now a well-established tool in numerical signal processing (for instance the JPEG2000 coding standard is based on a wavelet transform) it has been recognized in the past decades that they also possess several shortcomings, in particular with respect to the treatment of multidimensional data where anisotropic structures such as edges in images are typically present. This deficiency of wavelets has given birth to the research area of geometric multiscale analysis where frame constructions which are optimally adapted to anisotropic structures are sought. A milestone in this area has been the construction of curvelet and shearlet frames which are indeed capable of optimally resolving curved singularities in multidimensional data.
In this course we will outline these developments, starting with a short introduction to wavelets and then moving on to more recent constructions of curvelets, shearlets and ridgelets. We will discuss their applicability to diverse problems in signal processing such as compression, denoising, morphological component analysis, or the solution of transport PDEs. Implementation aspects will also be covered. (Slides in attachment).[-]
In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While ...[+]

42C15 ; 42C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The "positivity phenomenon" for Bessel sequences, frames and Riesz bases $\left(u_k\right)$ are studied in $L^2$ spaces over the compacts of homogeneous (Coifman-Weiss) type $\Omega=(\Omega, \rho, \mu)$. Under some relations between three basic metric-measure dimensions of $\Omega$, we obtain asymptotics for the mass moving norms $\left\|u_k\right\|_{K R}$ (Kantorovich-Rubinstein), as well as for singular numbers of the Lipschitz and Hajlasz-Sobolev embeddings. Our main observation shows that, quantitatively, the rate of the convergence $\left\|u_k\right\|_{K R} \longrightarrow 0$ depends on an interplay between geometric doubling and measure doubling/halving exponents. The "more homogeneous" is the space, the sharper are the results.[-]
The "positivity phenomenon" for Bessel sequences, frames and Riesz bases $\left(u_k\right)$ are studied in $L^2$ spaces over the compacts of homogeneous (Coifman-Weiss) type $\Omega=(\Omega, \rho, \mu)$. Under some relations between three basic metric-measure dimensions of $\Omega$, we obtain asymptotics for the mass moving norms $\left\|u_k\right\|_{K R}$ (Kantorovich-Rubinstein), as well as for singular numbers of the Lipschitz and Ha...[+]

42C15 ; 43A85 ; 46E35 ; 47B10 ; 54E35 ; 46B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Wavelets, shearlets and geometric frames - Part 2 - Grohs, Philipp (Auteur de la Conférence) | CIRM H

Multi angle

In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While wavelets are now a well-established tool in numerical signal processing (for instance the JPEG2000 coding standard is based on a wavelet transform) it has been recognized in the past decades that they also possess several shortcomings, in particular with respect to the treatment of multidimensional data where anisotropic structures such as edges in images are typically present. This deficiency of wavelets has given birth to the research area of geometric multiscale analysis where frame constructions which are optimally adapted to anisotropic structures are sought. A milestone in this area has been the construction of curvelet and shearlet frames which are indeed capable of optimally resolving curved singularities in multidimensional data.
In this course we will outline these developments, starting with a short introduction to wavelets and then moving on to more recent constructions of curvelets, shearlets and ridgelets. We will discuss their applicability to diverse problems in signal processing such as compression, denoising, morphological component analysis, or the solution of transport PDEs. Implementation aspects will also be covered. (Slides in attachment).[-]
In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While ...[+]

42C15 ; 42C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Time-frequency (or Gabor) frames are constructed from time- and frequency shifts of one (or several) basic analysis window and thus carry a very particular structure. On the other hand, due to their close relation to standard signal processing tools such as the short-time Fourier transform, but also local cosine bases or lapped transforms, in the past years time-frequency frames have increasingly been applied to solve problems in audio signal processing.
In this course, we will introduce the basic concepts of time-frequency frames, keeping their connection to audio applications as a guide-line. We will show how standard mathematical tools such as the Walnut representations can be used to obtain convenient reconstruction methods and also generalizations such the non-stationary Gabor transform. Applications such as the realization of an invertible constant-Q transform will be presented. Finally, we will introduce the basic notions of transform domain modelling, in particular those based on sparsity and structured sparsity, and their applications to denoising, multilayer decomposition and declipping. (Slides in attachment).[-]
Time-frequency (or Gabor) frames are constructed from time- and frequency shifts of one (or several) basic analysis window and thus carry a very particular structure. On the other hand, due to their close relation to standard signal processing tools such as the short-time Fourier transform, but also local cosine bases or lapped transforms, in the past years time-frequency frames have increasingly been applied to solve problems in audio signal ...[+]

42C15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Continuous (semi-)frames revisited - Antoine, Jean-Pierre (Auteur de la Conférence) | CIRM H

Multi angle

We start by recalling the essential features of frames, both discrete and continuous, with some emphasis on the notion of frame duality. Then we turn to generalizations, namely upper and lower semi-frames, and their duality. Next we consider arbitrary measurable maps and examine the standard operators, analysis, synthesis and frame operators, and study their properties. Finally we analyze the recent notion of reproducing pairs. In view of their duality structure, we introduce two natural partial inner product spaces and formulate a number of open questions.

Keywords: continuous frames - semi-frames - frame duality - reproducing pairs - partial inner product spaces[-]
We start by recalling the essential features of frames, both discrete and continuous, with some emphasis on the notion of frame duality. Then we turn to generalizations, namely upper and lower semi-frames, and their duality. Next we consider arbitrary measurable maps and examine the standard operators, analysis, synthesis and frame operators, and study their properties. Finally we analyze the recent notion of reproducing pairs. In view of their ...[+]

42C15 ; 42C40 ; 46C50 ; 65T60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Wavelet theory, coorbit spaces and ramifications - Feichtinger, Hans G. (Auteur de la Conférence) | CIRM H

Multi angle

Coorbit theory was developed in the late eighties as a unifying principle covering (possible non-)orthogonal frame expansions in the wavelet and in the time-frequency context. Very much in the spirit of « coherent frames » or also reproducing kernels for a Moebius invariant Banach space of analytic functions one can describe a family of function spaces associated with a given integrable and irreducible group representation on a Hilbert space by its generalized wavelet transform, and obtain (among others) atomic decomposition results for the resulting spaces. The theory was flexible enough to cover also more recent examples, such as voice transforms related to the Blaschke group or the spaces (and frames) related to the shearlet transform.
As time permits I will talk also on the role of Banach frames and the usefulness of Banach Gelfand triples, especially the one based on the Segal algebra $S_0(G)$, which happens to be a modulation space, in fact the minimal among all time-frequency invariant non-trivial function spaces.

Keywords: wavelet theory - time-frequency analysis - modulation spaces - Banach-Gelfand-triples - Toeplitz operators - atomic decompositions - function spaces - shearlet transform - Blaschke group[-]
Coorbit theory was developed in the late eighties as a unifying principle covering (possible non-)orthogonal frame expansions in the wavelet and in the time-frequency context. Very much in the spirit of « coherent frames » or also reproducing kernels for a Moebius invariant Banach space of analytic functions one can describe a family of function spaces associated with a given integrable and irreducible group representation on a Hilbert space by ...[+]

43-XX ; 46Exx ; 42C40 ; 42C15 ; 42C10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Wavelets are standard tool in signal- and image processing. It has taken a long time until wavelet methods have been accepted in numerical analysis as useful tools for the numerical discretization of certain PDEs. In the signal- and image processing community several new frame constructions have been introduced in recent years (curvelets, shearlets, ridgelets, ...). Question: Can they be used also in numerical analysis? This talk: Small first step.[-]
Wavelets are standard tool in signal- and image processing. It has taken a long time until wavelet methods have been accepted in numerical analysis as useful tools for the numerical discretization of certain PDEs. In the signal- and image processing community several new frame constructions have been introduced in recent years (curvelets, shearlets, ridgelets, ...). Question: Can they be used also in numerical analysis? This talk: Small first ...[+]

42C15 ; 42C40 ; 65Txx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform plays a fundamental role. In the geometric situation this role is given to some "Laplacian operator" with some properties.
In the last part we will show that the previous theory could help to revisit the topic of regularity of Gaussian processes, and to give a criterium only based on the regularity of the covariance operator.[-]
In the fist part of the talk, we will look to some statistical inverse problems for which the natural framework is no more an Euclidian one.
In the second part we will try to give the initial construction of (not orthogonal) wavelets -of the 80 - by Frazier, Jawerth,Weiss, before the Yves Meyer ORTHOGONAL wavelets theory.
In the third part we will propose a construction of a geometric wavelet theory. In the Euclidian case, Fourier transform ...[+]

42C15 ; 43A85 ; 46E35 ; 58J35 ; 43A80 ; 62G05 ; 62G10 ; 62G20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The unitary extension principle on LCA groups - Christensen, Ole (Auteur de la Conférence) | CIRM H

Multi angle

The unitary extension principle (UEP) by Ron & Shen yields a convenient way of constructing tight wavelet frames in L2(R). Since its publication in 1997 several generalizations and reformulations have been obtained, and it has been proved that the UEP has important applications within image processing. In the talk we will present a recent extension of the UEP to the setting of generalized shift-invariant systems on R (or more generally, on any locally compact abelian group). For example, this generalization immediately leads to a discrete version of the UEP.
(The results are joint work with Say Song Goh).[-]
The unitary extension principle (UEP) by Ron & Shen yields a convenient way of constructing tight wavelet frames in L2(R). Since its publication in 1997 several generalizations and reformulations have been obtained, and it has been proved that the UEP has important applications within image processing. In the talk we will present a recent extension of the UEP to the setting of generalized shift-invariant systems on R (or more generally, on any ...[+]

42C15 ; 42C40 ; 65T60

Sélection Signaler une erreur