Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Complex projective structures, or PSL( $2, \mathbb{C})$-opers, play a central role in the theory of uniformization of Riemann surfaces. A very natural generalization of this notion is to consider complex projective structures with ramification points. This gives rise to the notion of branched projective structure, which is much more flexible in many aspects. For example, any representation of a surface group with values in $\operatorname{PSL}(2, \mathbb{C})$ is obtained as the holonomy of a branched projective structure. We will show that one of the central properties of complex projective structures, namely the complex analytic structure of their moduli spaces, extends to the branched case.
[-]
Complex projective structures, or PSL( $2, \mathbb{C})$-opers, play a central role in the theory of uniformization of Riemann surfaces. A very natural generalization of this notion is to consider complex projective structures with ramification points. This gives rise to the notion of branched projective structure, which is much more flexible in many aspects. For example, any representation of a surface group with values in $\operatorname{PSL}(2, ...
[+]
53-XX ; 57M50 ; 14H15 ; 32G15 ; 14H30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in each moduli space. The proofs use recent results in Teichmüller dynamics, especially joint work with Eskin and Filip on the Kontsevich-Zorich cocycle. Joint work with McMullen and Mukamel as well as Eskin, McMullen and Mukamel shows that exotic examples of "higher dimensional Teichmüller discs" do exist.
[-]
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in ...
[+]
30F60 ; 32G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of connections on the punctured disc, where the structure group is the infinite-dimensional group of symplectic automorphisms of an algebraic torus. I will not assume any knowledge of stability conditions, DT invariants etc.
[-]
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of ...
[+]
14F05 ; 18E30 ; 14D20 ; 81T20 ; 32G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will consider the problem of counting the number of pairs (z,w) of saddle connections on a translation surface whose holonomy vectors have bounded virtual area. That is, we fix a positive A and require that the absolute value of the cross product of the holonomy vectors of z and w is bounded by A. One motivation is the result of Smillie-Weiss that for a lattice surface there is a constant A such that if z and w have virtual area bounded by A then they are parallel. We show that for any A there is a constant $c_A$ such that for almost every translation surface the number of pairs with virtual area bounded by A and of length at most R is asymptotic to $c_AR^2$ as R goes to infinity. This is joint work with Jayadev Athreya and Samantha Fairchild.
[-]
In this talk I will consider the problem of counting the number of pairs (z,w) of saddle connections on a translation surface whose holonomy vectors have bounded virtual area. That is, we fix a positive A and require that the absolute value of the cross product of the holonomy vectors of z and w is bounded by A. One motivation is the result of Smillie-Weiss that for a lattice surface there is a constant A such that if z and w have virtual area ...
[+]
32G15 ; 30F30 ; 28C10 ; 30F45