Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The shear coordinate is a countable coordinate system to describe increasing self-maps of the unit circle, which is furthermore invariant under modular transformations. Characterizations of circle homeomorphism and quasisymmetric homeomorphisms were obtained by D. Šarić. We are interested in characterizing Weil-Petersson circle homeomorphisms using shears. This class of homeomorphisms arises from the Kähler geometry on the universal Teichmüller space.
For this, we introduce diamond shear which is the minimal combination of shears producing WP homeomorphisms. Diamond shears are closely related to the log-Lambda length introduced by R. Penner, which can be viewed as a renormalized length of an infinite geodesic. We obtain sharp results comparing the class of circle homeomorphisms with square summable diamond shears with the Weil-Petersson class and Hölder classes. We also express the Weil-Petersson metric tensor and symplectic form in terms of infinitesimal shears and diamond shears.
This talk is based on joint work with Dragomir Šarić and Catherine Wolfram. See https://arxiv.org/abs/2211.11497.
[-]
The shear coordinate is a countable coordinate system to describe increasing self-maps of the unit circle, which is furthermore invariant under modular transformations. Characterizations of circle homeomorphism and quasisymmetric homeomorphisms were obtained by D. Šarić. We are interested in characterizing Weil-Petersson circle homeomorphisms using shears. This class of homeomorphisms arises from the Kähler geometry on the universal Teichmüller ...
[+]
30F45 ; 30F60 ; 32G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in each moduli space. The proofs use recent results in Teichmüller dynamics, especially joint work with Eskin and Filip on the Kontsevich-Zorich cocycle. Joint work with McMullen and Mukamel as well as Eskin, McMullen and Mukamel shows that exotic examples of "higher dimensional Teichmüller discs" do exist.
[-]
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in ...
[+]
30F60 ; 32G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of connections on the punctured disc, where the structure group is the infinite-dimensional group of symplectic automorphisms of an algebraic torus. I will not assume any knowledge of stability conditions, DT invariants etc.
[-]
There is a very general story, due to Joyce and Kontsevich-Soibelman, which associates to a CY3 (three-dimensional Calabi-Yau) triangulated category equipped with a stability condition some rational numbers called Donaldson-Thomas (DT) invariants. The point I want to emphasise is that the wall-crossing formula, which describes how these numbers change as the stability condition is varied, takes the form of an iso-Stokes condition for a family of ...
[+]
14F05 ; 18E30 ; 14D20 ; 81T20 ; 32G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show how recent results of the authors on equidistribution of square-tiled surfaces of given combinatorial type allow to compute approximate values of Masur-Veech volumes of the strata in the moduli spaces of Abelian and quadratic differentials by Monte Carlo method.
We also show how similar approach allows to count asymptotical number of meanders of fixed combinatorial type in various settings in all genera. Our formulae are particularly efficient for classical meanders in genus zero.
We construct a bridge between flat and hyperbolic worlds giving a formula for the Masur-Veech volume of the moduli space of quadratic differentials in terms of intersection numbers of $\mathcal{M}_{g,n}$ (in the spirit of Mirzakhani's formula for Weil-Peterson volume of the moduli space of pointed curves).
Joint work with V. Delecroix, E. Goujard, P. Zograf.
[-]
We show how recent results of the authors on equidistribution of square-tiled surfaces of given combinatorial type allow to compute approximate values of Masur-Veech volumes of the strata in the moduli spaces of Abelian and quadratic differentials by Monte Carlo method.
We also show how similar approach allows to count asymptotical number of meanders of fixed combinatorial type in various settings in all genera. Our formulae ...
[+]
32G15 ; 05C30 ; 05Axx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will consider the problem of counting the number of pairs (z,w) of saddle connections on a translation surface whose holonomy vectors have bounded virtual area. That is, we fix a positive A and require that the absolute value of the cross product of the holonomy vectors of z and w is bounded by A. One motivation is the result of Smillie-Weiss that for a lattice surface there is a constant A such that if z and w have virtual area bounded by A then they are parallel. We show that for any A there is a constant $c_A$ such that for almost every translation surface the number of pairs with virtual area bounded by A and of length at most R is asymptotic to $c_AR^2$ as R goes to infinity. This is joint work with Jayadev Athreya and Samantha Fairchild.
[-]
In this talk I will consider the problem of counting the number of pairs (z,w) of saddle connections on a translation surface whose holonomy vectors have bounded virtual area. That is, we fix a positive A and require that the absolute value of the cross product of the holonomy vectors of z and w is bounded by A. One motivation is the result of Smillie-Weiss that for a lattice surface there is a constant A such that if z and w have virtual area ...
[+]
32G15 ; 30F30 ; 28C10 ; 30F45
Déposez votre fichier ici pour le déplacer vers cet enregistrement.