En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 47A16 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

A universal hypercyclic representation - Glasner, Eli (Auteur de la Conférence) | CIRM H

Post-edited

For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about the development of this idea and its applications as expounded in a subsequent work of Sophie Grivaux.[-]
For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about ...[+]

37A15 ; 37A05 ; 37A25 ; 37A30 ; 47A16 ; 47A67 ; 47D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Some remarks regarding ergodic operators - Matheron, Etienne (Auteur de la Conférence) | CIRM H

Multi angle

Let us say that a continuous linear operator $T$ acting on some Polish topological vector space is ergodic if it admits an ergodic probability measure with full support. This talk will be centred in the following question: how can we see that an operator is or is not ergodic? More precisely, I will try (if I'm able to manage my time) to talk about two “positive" results and one “negative" result. The first positive result says that if the operator $T$ acts on a reflexive Banach space and satisfies a strong form of frequent hypercyclicity, then $T$ is ergodic. The second positive result is the well-known criterion for ergodicity relying on the perfect spanning property for unimodular eigenvectors, of which I will outline a “soft" Baire category proof. The negative result will be stated in terms of a parameter measuring the maximal frequency with which (generically) the orbit of a hypercyclic vector for $T$ can visit a ball centred at 0. The talk is based on joint work with Sophie Grivaux.[-]
Let us say that a continuous linear operator $T$ acting on some Polish topological vector space is ergodic if it admits an ergodic probability measure with full support. This talk will be centred in the following question: how can we see that an operator is or is not ergodic? More precisely, I will try (if I'm able to manage my time) to talk about two “positive" results and one “negative" result. The first positive result says that if the ...[+]

47A16 ; 47A35 ; 37A05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

How to shift from frequent hypercyclicity to chaos? - Menet, Quentin (Auteur de la Conférence) | CIRM H

Multi angle

In linear dynamics, chaos requires the density of some orbits and the density of periodic points while frequent hypercyclicity assumes the existence of orbits visiting frequently each non-empty open set. These two notions that we thought were linked are not in general. However, neither are they completely foreign to each other and in particular when we consider the most studied operators in linear dynamics: weighted shifts.

47A16 ; 47B37 ; 46A45

Sélection Signaler une erreur