En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 47A35 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The titles of the of the individual lectures are:
1. Operators dynamics versus base space dynamics
2. Dilations and joinings
3. Compact semigroups and splitting theorems

37A30 ; 47A35 ; 47Nxx ; 47A20 ; 47D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The titles of the of the individual lectures are:
1. Operators dynamics versus base space dynamics
2. Dilations and joinings
3. Compact semigroups and splitting theorems

37A30 ; 47A35 ; 47Nxx ; 47A20 ; 47D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The titles of the of the individual lectures are:
1. Operators dynamics versus base space dynamics
2. Dilations and joinings
3. Compact semigroups and splitting theorems

37A30 ; 47A35 ; 47Nxx ; 47A20 ; 47D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On some operator-theoretic aspects of ergodic theory - Haase, Markus (Auteur de la Conférence) | CIRM H

Multi angle

I will describe the main features and methods of a strictly operator-theoretic/functional-analytic perspective on structural ergodic theory in the spirit and in continuation of a recent book project (with T.Eisner, B.Farkas and R.Nagel). The approach is illustrated by a review of some classical results by Abramov on systems with quasi-discrete spectrum and by Veech on compact group extensions (joint work with N.Moriakov).

37A30 ; 37A35 ; 37A55 ; 37B05 ; 47A35 ; 47Nxx ; 22CXX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Some remarks regarding ergodic operators - Matheron, Etienne (Auteur de la Conférence) | CIRM H

Multi angle

Let us say that a continuous linear operator $T$ acting on some Polish topological vector space is ergodic if it admits an ergodic probability measure with full support. This talk will be centred in the following question: how can we see that an operator is or is not ergodic? More precisely, I will try (if I'm able to manage my time) to talk about two “positive" results and one “negative" result. The first positive result says that if the operator $T$ acts on a reflexive Banach space and satisfies a strong form of frequent hypercyclicity, then $T$ is ergodic. The second positive result is the well-known criterion for ergodicity relying on the perfect spanning property for unimodular eigenvectors, of which I will outline a “soft" Baire category proof. The negative result will be stated in terms of a parameter measuring the maximal frequency with which (generically) the orbit of a hypercyclic vector for $T$ can visit a ball centred at 0. The talk is based on joint work with Sophie Grivaux.[-]
Let us say that a continuous linear operator $T$ acting on some Polish topological vector space is ergodic if it admits an ergodic probability measure with full support. This talk will be centred in the following question: how can we see that an operator is or is not ergodic? More precisely, I will try (if I'm able to manage my time) to talk about two “positive" results and one “negative" result. The first positive result says that if the ...[+]

47A16 ; 47A35 ; 37A05

Sélection Signaler une erreur