En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 49J20 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dirichlet-Neumann shape optimization problems - Buttazzo, Giuseppe (Auteur de la Conférence) | CIRM H

Multi angle

We consider spectral optimization problems of the form

$\min\lbrace\lambda_1(\Omega;D):\Omega\subset D,|\Omega|=1\rbrace$

where $D$ is a given subset of the Euclidean space $\textbf{R}^d$. Here $\lambda_1(\Omega;D)$ is the first eigenvalue of the Laplace operator $-\Delta$ with Dirichlet conditions on $\partial\Omega\cap D$ and Neumann or Robin conditions on $\partial\Omega\cap\partial D$. The equivalent variational formulation

$\lambda_1(\Omega;D)=\min\lbrace\int_\Omega|\nabla u|^2dx+k\int_{\partial D}u^2d\mathcal{H}^{d-1}:$

$u\in H^1(D),u=0$ on $\partial\Omega\cap D,||u||_{L^2(\Omega)}=1\rbrace$

reminds the classical drop problems, where the first eigenvalue replaces the total variation functional. We prove an existence result for general shape cost functionals and we show some qualitative properties of the optimal domains. The case of Dirichlet condition on a $\textit{fixed}$ part and of Neumann condition on the $\textit{free}$ part of the boundary is also considered[-]
We consider spectral optimization problems of the form

$\min\lbrace\lambda_1(\Omega;D):\Omega\subset D,|\Omega|=1\rbrace$

where $D$ is a given subset of the Euclidean space $\textbf{R}^d$. Here $\lambda_1(\Omega;D)$ is the first eigenvalue of the Laplace operator $-\Delta$ with Dirichlet conditions on $\partial\Omega\cap D$ and Neumann or Robin conditions on $\partial\Omega\cap\partial D$. The equivalent variational formulation

$\lam...[+]

49Q10 ; 49J20 ; 49N45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

25+ years of wavelets for PDEs - Kunoth, Angela (Auteur de la Conférence) | CIRM H

Post-edited

Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality and optimality of approximations and related concepts from approximation the- ory. We will see that wavelet bases can serve as a basic ingredient, both for the theory as well as for algorithmic realizations. Particularly for situations where solutions exhibit singularities, wavelet concepts enable adaptive appproximations for which convergence and optimal algorithmic complexity can be established. I will describe corresponding implementations based on biorthogonal spline-wavelets.
Moreover, wavelet-related concepts have triggered new developments for efficiently solving complex systems of PDEs, as they arise from optimization problems with PDEs.[-]
Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality ...[+]

65T60 ; 94A08 ; 65N12 ; 65N30 ; 49J20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the two lectures an introduction to PDE-constrained optimization is given. Exemplary, the techniques are described for linear elliptic and parabolic equations. First-order optimality conditions are derived. Then, these techniques are extended to more difficult problems including inequality constraints and nonlinearities. Furthermore, second-order methods for optimization are explained.

49J20 ; 49K20 ; 49M41 ; 90Cxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the two lectures an introduction to PDE-constrained optimization is given. Exemplary, the techniques are described for linear elliptic and parabolic equations. First-order optimality conditions are derived. Then, these techniques are extended to more difficult problems including inequality constraints and nonlinearities. Furthermore, second-order methods for optimization are explained.

49J20 ; 49K20 ; 49M41 ; 90Cxx

Sélection Signaler une erreur