Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
I discuss some recent developments related to the robust framework for pricing and hedging in discrete time. I introduce pointwise approach based on pathspace restrictions and compare it with the quasi-sure setting of Bouchard and Nutz (2015), and show that their versions of the Fundamental Theorem of Asset Pricing and the Pricing-Hedging duality may be deduced one from the other via a construction of a suitable set of paths which represents a given set of measures. I show that the setup with statically traded hedging instruments can be naturally lifted to a setup with only dynamically traded assets without changing the superhedging prices. This allows one to deduce, in particular, a pricing-hedging duality for American options. Subsequently, I focus on the superhedging problem and discuss the choice of a trading strategy amongst all feasible super-hedging strategies. First, I establish existence of a minimal superhedging strategy and characterise its value via a concave envelope construction. Then I introduce a secondary problem of maximisation of expected utility of consumption. Building on Nutz (2014) and Blanchard and Carassus (2017) I provide suitable assumptions under which an optimal strategy exists and is unique. Finally, I also explain how additional information can be seen as a further restriction of the pathspace. This allows one to quantify to value of such a new information. The talk is based on a number of recent works (see references) as well as ongoing research with Johannes Wiesel.
[-]
I discuss some recent developments related to the robust framework for pricing and hedging in discrete time. I introduce pointwise approach based on pathspace restrictions and compare it with the quasi-sure setting of Bouchard and Nutz (2015), and show that their versions of the Fundamental Theorem of Asset Pricing and the Pricing-Hedging duality may be deduced one from the other via a construction of a suitable set of paths which represents a ...
[+]
91G20 ; 91B70 ; 60G40 ; 60G42 ; 90C46 ; 28A05 ; 49N15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For several decades, the no-arbitrage (NA) condition and the martingale measures have played a major role in the financial asset's pricing theory. Here, we propose a new approach based on convex duality instead of martingale measures duality: our prices will be expressed using Fenchel conjugate and biconjugate.
This naturally leads to a weak condition of absence of arbitrage opportunity, called Absence of Immediate Profit (AIP), which asserts that the price of the zero claim should be zero. We study the link between (AIP), (NA) and the no-free lunch condition. We show in a one step model that, under (AIP), the super-hedging cost is just the payoff's concave envelop and that (AIP) is equivalent to the non-negativity of the super-hedging prices of some call option.
In the multiple-period case, for a particular, but still general setup, we propose a recursive scheme for the computation of a the super-hedging cost of a convex option. We also give some numerical illustrations.
[-]
For several decades, the no-arbitrage (NA) condition and the martingale measures have played a major role in the financial asset's pricing theory. Here, we propose a new approach based on convex duality instead of martingale measures duality: our prices will be expressed using Fenchel conjugate and biconjugate.
This naturally leads to a weak condition of absence of arbitrage opportunity, called Absence of Immediate Profit (AIP), which asserts ...
[+]
60G42 ; 91G10 ; 49N15 ; 90C15