m

F Nous contacter


0

Documents  51E24 | enregistrements trouvés : 2

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Descent in Bruhat-Tits theory
Prasad, Gopal (Auteur de la Conférence) | CIRM (Editeur )

Bruhat-Tits theory applies to a semisimple group G, defined over an henselian discretly valued field K, such that G admits a Borel K-subgroup after an extension of K. The construction of the theory goes then by a deep Galois descent argument for the building and also for the parahoric group scheme. In the case of unramified extension, that descent has been achieved by Bruhat-Tits at the end of [BT2]. The tamely ramified case is due to G. Rousseau [R]. Recently, G. Prasad found a new way to investigate the descent part of the theory. This is available in the preprints [Pr1, Pr2] dealing respectively with the unramified case and the tamely ramified case. It is much shorter and the method is based more on fine geometry of the building (e.g. galleries) than algebraic groups techniques.
Bruhat-Tits theory applies to a semisimple group G, defined over an henselian discretly valued field K, such that G admits a Borel K-subgroup after an extension of K. The construction of the theory goes then by a deep Galois descent argument for the building and also for the parahoric group scheme. In the case of unramified extension, that descent has been achieved by Bruhat-Tits at the end of [BT2]. The tamely ramified case is due to G. ...

20G15 ; 20E42 ; 51E24

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Bruhat-Tits theory of quasi-split groups
Rémy, Bertrand (Auteur de la Conférence) | CIRM (Editeur )

The goal of this lecture is to present the construction of the Bruhat-Tits buildings attached to a quasi-split (that is admitting a Borel subgroup) semisimple group G defined over an henselian discretly valued field K and also the construction of the parahoric group schemes parametrized by the points of the buildings. The building part is [BT1] and the group scheme part corresponds to the four first sections of [BT2] but could also be treated by Yu's method [Y] namely by using Raynaud's theory of group schemes [BLR].
The goal of this lecture is to present the construction of the Bruhat-Tits buildings attached to a quasi-split (that is admitting a Borel subgroup) semisimple group G defined over an henselian discretly valued field K and also the construction of the parahoric group schemes parametrized by the points of the buildings. The building part is [BT1] and the group scheme part corresponds to the four first sections of [BT2] but could also be treated by ...

20G15 ; 20E42 ; 51E24

Filtrer

Z