En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53C10 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Closed $G_{2}$-structures - Fino, Anna (Auteur de la Conférence) | CIRM H

Multi angle

I will review known examples of compact 7-manifolds admitting a closed $G_{2}$-structure. Moreover, I will discuss some results on the behaviour of the Laplacian $G_{2}$-flow starting from a closed $G_{2}$-structure whose induced metric satisfies suitable extra condition.

53C30 ; 53C10 ; 22E25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

ALC manifolds with exceptional holonomy - Foscolo, Lorenzo (Auteur de la Conférence) | CIRM H

Multi angle

We will describe the construction of complete non-compact Ricci-flat manifolds of dimension 7 and 8 with holonomy $G_{2}$ and Spin(7) respectively. The examples we consider all have non-maximal volume growth and an asymptotic geometry, so-called ALC geometry, that generalises to higher dimension the asymptotic geometry of 4-dimensional ALF hyperkähler metrics. The interest in these metrics is motivated by the study of codimension 1 collapse of compact manifolds with exceptional holonomy. The constructions we will describe are based on the study of adiabatic limits of ALC metrics on principal Seifert circle fibrations over asymptotically conical orbifolds, cohomogeneity one techniques and the desingularisation of ALC spaces with isolated conical singularities. The talk is partially based on joint work with Mark Haskins and Johannes Nordstrm.[-]
We will describe the construction of complete non-compact Ricci-flat manifolds of dimension 7 and 8 with holonomy $G_{2}$ and Spin(7) respectively. The examples we consider all have non-maximal volume growth and an asymptotic geometry, so-called ALC geometry, that generalises to higher dimension the asymptotic geometry of 4-dimensional ALF hyperkähler metrics. The interest in these metrics is motivated by the study of codimension 1 collapse of ...[+]

53C10 ; 53C25 ; 53C29 ; 53C80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Fibonacci TQFT gives interesting representations of mapping class groups into pseudo-unitary groups. In some exceptional cases, they correspond to holonomy representation of complex hyperbolic structures on some compactifications of the moduli spaces of curves. The proof uses a computation of the Toledo invariant which fits in the framework of Cohomological Field theories. This is joint work with Bertrand Deroin.

14D22 ; 53C10 ; 57R56

Sélection Signaler une erreur