En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

  • Documents 53C25 6 résultats

    Filtrer
    Sélectionner : Tous / Aucun
    Q
    Déposez votre fichier ici pour le déplacer vers cet enregistrement.
    y
    The algebraic delta invariant, a number encoding the K-stability of a Fano variety, is a central theme of this Winter school. In the first lecture, T. Delcroix presents an analytic viewpoint on the delta invariant developped by Kewei Zhang, along with the rough ideas of the variational approach to existence of canonical Kähler metrics. In his second lecture, he extends this to the weighted Kähler setting (joint work with S. Jubert), allowing to deal with Kähler-Ricci solitons and more. [-]
    The algebraic delta invariant, a number encoding the K-stability of a Fano variety, is a central theme of this Winter school. In the first lecture, T. Delcroix presents an analytic viewpoint on the delta invariant developped by Kewei Zhang, along with the rough ideas of the variational approach to existence of canonical Kähler metrics. In his second lecture, he extends this to the weighted Kähler setting (joint work with S. Jubert), allowing to ...[+]

    32Q20 ; 53C55 ; 53C25

    Sélection Signaler une erreur
    Déposez votre fichier ici pour le déplacer vers cet enregistrement.
    y
    The algebraic delta invariant, a number encoding the K-stability of a Fano variety, is a central theme of this Winter school. In the first lecture, T. Delcroix presents an analytic viewpoint on the delta invariant developped by Kewei Zhang, along with the rough ideas of the variational approach to existence of canonical Kähler metrics. In his second lecture, he extends this to the weighted Kähler setting (joint work with S. Jubert), allowing to deal with Kähler-Ricci solitons and more. [-]
    The algebraic delta invariant, a number encoding the K-stability of a Fano variety, is a central theme of this Winter school. In the first lecture, T. Delcroix presents an analytic viewpoint on the delta invariant developped by Kewei Zhang, along with the rough ideas of the variational approach to existence of canonical Kähler metrics. In his second lecture, he extends this to the weighted Kähler setting (joint work with S. Jubert), allowing to ...[+]

    32Q20 ; 53C55 ; 53C25

    Sélection Signaler une erreur
    Déposez votre fichier ici pour le déplacer vers cet enregistrement.
    y
    By a gluing construction, we produce steady Kähler-Ricci solitons on equivariant crepant resolutions of Cn/G, where G is a finite subgroup of SU(n), generalizing Cao's construction of such a soliton on a resolution of Cn/Zn.
    This is joint work with Olivier Biquard.

    53C25 ; 53C44 ; 53C55

    Sélection Signaler une erreur
    Déposez votre fichier ici pour le déplacer vers cet enregistrement.
    y
    In this talk I will discuss the existence of complete extremal metrics on the complement of simple normal crossings divisors in compact Kähler manifolds, and stability of pairs, in the toric case. Using constructions of Legendre and Apostolov-Calderbank-Gauduchon, we completely characterize when this holds for Hirzebruch surfaces. In particular, our results show that relative stability of a pair and the existence of extremal Poincaré type/cusp metrics do not coincide. However, stability is equivalent to the existence of a complete extremal metric on the complement of the divisor in our examples. It is the Poincaré type condition on the asymptotics of the extremal metric that fails in general.
    This is joint work with Vestislav Apostolov and Hugues Auvray.[-]
    In this talk I will discuss the existence of complete extremal metrics on the complement of simple normal crossings divisors in compact Kähler manifolds, and stability of pairs, in the toric case. Using constructions of Legendre and Apostolov-Calderbank-Gauduchon, we completely characterize when this holds for Hirzebruch surfaces. In particular, our results show that relative stability of a pair and the existence of extremal Poincaré type/cusp ...[+]

    53C55 ; 53C25 ; 30F45

    Sélection Signaler une erreur
    Déposez votre fichier ici pour le déplacer vers cet enregistrement.
    y

    ALC manifolds with exceptional holonomy - Foscolo, Lorenzo (Auteur de la Conférence) | CIRM H

    Multi angle

    We will describe the construction of complete non-compact Ricci-flat manifolds of dimension 7 and 8 with holonomy G2 and Spin(7) respectively. The examples we consider all have non-maximal volume growth and an asymptotic geometry, so-called ALC geometry, that generalises to higher dimension the asymptotic geometry of 4-dimensional ALF hyperkähler metrics. The interest in these metrics is motivated by the study of codimension 1 collapse of compact manifolds with exceptional holonomy. The constructions we will describe are based on the study of adiabatic limits of ALC metrics on principal Seifert circle fibrations over asymptotically conical orbifolds, cohomogeneity one techniques and the desingularisation of ALC spaces with isolated conical singularities. The talk is partially based on joint work with Mark Haskins and Johannes Nordstrm.[-]
    We will describe the construction of complete non-compact Ricci-flat manifolds of dimension 7 and 8 with holonomy G2 and Spin(7) respectively. The examples we consider all have non-maximal volume growth and an asymptotic geometry, so-called ALC geometry, that generalises to higher dimension the asymptotic geometry of 4-dimensional ALF hyperkähler metrics. The interest in these metrics is motivated by the study of codimension 1 collapse of ...[+]

    53C10 ; 53C25 ; 53C29 ; 53C80

    Sélection Signaler une erreur
    Déposez votre fichier ici pour le déplacer vers cet enregistrement.
    y
    An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form which is a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is an invariant under Hamiltonian isotopies and very fundamental to the study of the Floer homology for intersections of Lagrangian submanifolds. In this talk we provide a Lie theoretic formula for the minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces and discuss several examples of the calculation by the formula.[-]
    An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form which is a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is an invariant under Hamiltonian isotopies and very fundamental to the ...[+]

    53C55 ; 53C25

    Sélection Signaler une erreur
    Close