En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53D50 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The ends of the Hitchin moduli space - Fredrickson, Laura (Auteur de la Conférence) | CIRM H

Multi angle

Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmu ̈ller theory, and the geometric Langlands correspondence. In this talk, I'll describe what solutions of SL(n, C)-Hitchin's equations “near the ends” of the moduli space look like, and the resulting compactification of the Hitchin moduli space. Wild Hitchin moduli spaces are an important ingredient in this construction. This construction generalizes Mazzeo-Swoboda-Weiss-Witt's construction of SL(2, C)-solutions of Hitchin's equations where the Higgs field is “simple.”[-]
Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmu ̈ller theory, and the geometric Langlands correspondence. In this talk, I'll describe what solutions of SL(n, C)-Hitchin's equations “near the ends” of the moduli space look like, and the resulting compactification of the Hitchin moduli space. Wild Hitchin moduli spaces are an important ...[+]

14D20 ; 14D21 ; 14H70 ; 14H60 ; 14K25 ; 14P25 ; 53C07 ; 53D50 ; 53D30 ; 81T45 ; 81T15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Geometric quantization of toric and semitoric systems - Miranda, Eva (Auteur de la Conférence) | CIRM H

Multi angle

One of the many contributions of Kostant is a rare gem which probably has not been sufficiently explored: a sheaf-theoretical model for geometric quantization associated to real polarizations. Kostant's model works very well for polarizations given by fibrations or fibration-like objects (like integrable systems away from singularities). For toric manifolds where the real polarization is determined by the fibers of the moment map, Kostant's model yields a representation space whose dimension is the number of integer points inside the corresponding Delzant polytope. We will discuss extensions of this model to consider almost toric manifolds and integrable systems with non-degenerate singularities where “unexpected” infinities can show up even if the manifold is compact.[-]
One of the many contributions of Kostant is a rare gem which probably has not been sufficiently explored: a sheaf-theoretical model for geometric quantization associated to real polarizations. Kostant's model works very well for polarizations given by fibrations or fibration-like objects (like integrable systems away from singularities). For toric manifolds where the real polarization is determined by the fibers of the moment map, Kostant's ...[+]

53D50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quantum footprints of symplectic rigidity - Polterovich, Leonid (Auteur de la Conférence) | CIRM H

Multi angle

We discuss interactions between quantum mechanics and symplectic topology including a link between symplectic displacement energy, a fundamental notion of symplectic dynamics, and the quantum speed limit, a universal constraint on the speed of quantum-mechanical processes.
Joint work with Laurent Charles.

81S10 ; 53D50 ; 81Q20 ; 81R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Differential equation for the Reidemeister torsion - Marché, Julien (Auteur de la Conférence) | CIRM H

Post-edited

The Reidemeister torsion may be viewed as a volume form on the character variety of a 3-manifold with boundary. I will explain a conjectural differential equation that this form should satisfy, motivated by the study of the asymptotical behaviour of quantum invariants.

53D50 ; 57M25 ; 57M27 ; 57R56

Sélection Signaler une erreur