En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46-XX 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - ...[+]

15-XX ; 41-XX ; 42-XX ; 46-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $V$ be an analytic subvariety of a domain $\Omega$ in $\mathbb{C}^{n}$. When does $V$ have the property that every bounded holomorphic function $f$ on $V$ has an extension to a bounded holomorphic function on $\Omega$ with the same norm?
An obvious sufficient condition is if $V$ is a holomorphic retract of $\Omega$. We shall discuss for what domains $\Omega$ this is also necessary.
This is joint work with Łukasz Kosiński.

47-XX ; 46-XX ; 32-XX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université[-]
Motivated by the spectrogram (or short-time Fourier transform) basic principles of linear algebra are explained, preparing for the more general case of Gabor frames in time-frequency analysis. The importance of the singular value decomposition and the four spaces associated with a matrix is pointed out, and based on this the pseudo-inverse (leading later to the dual Gabor frame) and the Loewdin (symmetric) orthogonalization are explained.
CIRM - ...[+]

15-XX ; 41-XX ; 42-XX ; 46-XX

Sélection Signaler une erreur