En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 57M50 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Variations on an example of Hirzebruch - Stover, Matthew (Auteur de la Conférence) | CIRM H

Multi angle

In '84, Hirzebruch constructed a very explicit noncompact ball quotient manifold in the process of constructing smooth projective surfaces with Chern slope arbitrarily close to 3. I will discuss how this and some closely related ball quotients are useful in answering a variety of other questions. Some of this is joint with Luca Di Cerbo.

14M27 ; 32Q45 ; 57M50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In this talk, we will develop the theory of generalized bridge trisections for smoothly embedded closed surfaces in smooth, closed four-manifolds. The main result is that any such surface can be isotoped to lie in bridge trisected position with respect to a given trisection of the ambient four-manifold. In the setting of knotted surfaces in the four-sphere, this gives a diagrammatic calculus that offers a promising new approach to four-dimensional knot theory. However, the theory extends to other ambient four-manifolds, and we will pay particular attention to the setting of complex curves in simple complex surfaces, where the theory produces surprisingly satisfying pictures and leads to interesting results about trisections of complex surfaces.
This talk is based on various joint works with Dave Gay, Peter Lambert-Cole, and Alex Zupan.[-]
In this talk, we will develop the theory of generalized bridge trisections for smoothly embedded closed surfaces in smooth, closed four-manifolds. The main result is that any such surface can be isotoped to lie in bridge trisected position with respect to a given trisection of the ambient four-manifold. In the setting of knotted surfaces in the four-sphere, this gives a diagrammatic calculus that offers a promising new approach to four-...[+]

57Q45 ; 57M25 ; 57M50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Exceptional 3-manifolds​ - Friedl, Stefan (Auteur de la Conférence) | CIRM H

Multi angle

We say a manifold $M$ is exceptional if for any $n$ all degree $n$ covers of $M$ are homeomorphic. For example closed surfaces and all tori are exceptional. We classify exceptional 3-manifolds.
This is based on joint work with Junghwan Park, Bram Petri and Aru Ray.

57M27 ; 57M25 ; 57M50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Structure of hyperbolic manifolds - Lecture 2 - Purcell, Jessica (Auteur de la Conférence) | CIRM H

Multi angle

In these lectures, we will review what it means for a 3-manifold to have a hyperbolic structure, and give tools to show that a manifold is hyperbolic. We will also discuss how to decompose examples of 3-manifolds, such as knot complements, into simpler pieces. We give conditions that allow us to use these simpler pieces to determine information about the hyperbolic geometry of the original manifold. Most of the tools we present were developed in the 1970s, 80s, and 90s, but continue to have modern applications.[-]
In these lectures, we will review what it means for a 3-manifold to have a hyperbolic structure, and give tools to show that a manifold is hyperbolic. We will also discuss how to decompose examples of 3-manifolds, such as knot complements, into simpler pieces. We give conditions that allow us to use these simpler pieces to determine information about the hyperbolic geometry of the original manifold. Most of the tools we present were developed in ...[+]

57M27 ; 57M50 ; 57M25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Structure of hyperbolic manifolds - Lecture 3 - Purcell, Jessica (Auteur de la Conférence) | CIRM H

Multi angle

In these lectures, we will review what it means for a 3-manifold to have a hyperbolic structure, and give tools to show that a manifold is hyperbolic. We will also discuss how to decompose examples of 3-manifolds, such as knot complements, into simpler pieces. We give conditions that allow us to use these simpler pieces to determine information about the hyperbolic geometry of the original manifold. Most of the tools we present were developed in the 1970s, 80s, and 90s, but continue to have modern applications.[-]
In these lectures, we will review what it means for a 3-manifold to have a hyperbolic structure, and give tools to show that a manifold is hyperbolic. We will also discuss how to decompose examples of 3-manifolds, such as knot complements, into simpler pieces. We give conditions that allow us to use these simpler pieces to determine information about the hyperbolic geometry of the original manifold. Most of the tools we present were developed in ...[+]

57M27 ; 57M50 ; 57M25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The things one finds in Fock-Goncharov coordinates - Tillmann, Stephan (Auteur de la Conférence) | CIRM H

Multi angle

Fock and Goncharov give parameterisations of two different types of moduli spaces of properly convex real projective structures. I'll discuss a number of observations made about these parameterisations, the geometric structures that are parameterised by them, their relationship with representations into SL(3,R), canonical cell decompositions, and compactifications. This includes joint work with Alex Casella, Robert Haraway, Robert Löwe and Dominic Tate.[-]
Fock and Goncharov give parameterisations of two different types of moduli spaces of properly convex real projective structures. I'll discuss a number of observations made about these parameterisations, the geometric structures that are parameterised by them, their relationship with representations into SL(3,R), canonical cell decompositions, and compactifications. This includes joint work with Alex Casella, Robert Haraway, Robert Löwe and ...[+]

57M50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Virtual torsion in the homology of 3-manifolds. - Chu, Michelle (Auteur de la Conférence) | CIRM H

Multi angle

Hongbin Sun showed that a closed real hyperbolic 3-manifold virtually contains any prescribed torsion subgroup as a direct factor in homology. In this talk we will discuss joint work with Daniel Groves generalizing Sun's result.

57M50 ; 30F40 ; 20F67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Some open 3-manifolds - Besson, Gérard (Auteur de la Conférence) | CIRM

Multi angle

We present some interesting examples of dimension-3 open manifolds whose Riemannian geometry is far from being understood. This also gives us an opportunity to study several questions relating to the existence of "good" Riemannian metrics on those manifolds. Some of these examples are open sets of the 3-sphere.

57M50 ; 53C21

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Various surgery operations on dimension four begin with a 4–manifold $X$ and an embedded surface $S$, then remove a neighborhood of $S$ and replace it with something else to produce an interesting new 4–manifold. In a few standard surgery constructions, especially the Gluck twist operation, I will show how, given a trisection diagram of $X$ with decorations that describe the embedded surface $S$, to produce a trisection diagram for the new 4–manifold.
This is joint work with Jeff Meier.[-]
Various surgery operations on dimension four begin with a 4–manifold $X$ and an embedded surface $S$, then remove a neighborhood of $S$ and replace it with something else to produce an interesting new 4–manifold. In a few standard surgery constructions, especially the Gluck twist operation, I will show how, given a trisection diagram of $X$ with decorations that describe the embedded surface $S$, to produce a trisection diagram for the new ...[+]

57M50 ; 57R45 ; 57R65 ; 57R17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Groups with Bowditch boundary a 2-sphere - Tshishiku, Bena (Auteur de la Conférence) | CIRM H

Multi angle

Bestvina-Mess showed that the duality properties of a group $G$ are encoded in any boundary that gives a Z-compactification of $G$. For example, a hyperbolic group with Gromov boundary an $n$-sphere is a PD$(n+1)$ group. For relatively hyperbolic pairs $(G,P)$, the natural boundary - the Bowditch boundary - does not give a Z-compactification of G. Nevertheless we show that if the Bowditch boundary of $(G,P)$ is a 2-sphere, then $(G,P)$ is a PD(3) pair.
This is joint work with Genevieve Walsh.[-]
Bestvina-Mess showed that the duality properties of a group $G$ are encoded in any boundary that gives a Z-compactification of $G$. For example, a hyperbolic group with Gromov boundary an $n$-sphere is a PD$(n+1)$ group. For relatively hyperbolic pairs $(G,P)$, the natural boundary - the Bowditch boundary - does not give a Z-compactification of G. Nevertheless we show that if the Bowditch boundary of $(G,P)$ is a 2-sphere, then $(G,P)$ is a ...[+]

57M07 ; 20F67 ; 20F65 ; 57M50

Sélection Signaler une erreur