m

F Nous contacter


0

Documents  58C25 | enregistrements trouvés : 3

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera également toutes les opérations sur les variétés pseudo-riemanniennes (variétés dotées d'un tenseur métrique) : connexion de Levi-Civita, courbure, géodésiques, isomorphismes musicaux et dualité de Hodge.Dans ce cours, nous introduirons tout d'abord la problématique du calcul tensoriel formel, en distinguant le calcul dit “abstrait” du calcul explicite. C'est ce dernier qui nous intéresse ici. Il se ramène in fine au calcul symbolique sur les composantes des champs tensoriels dans un champ de repères, ces composantes étant exprimées en termes des coordonnées d'une carte donnée.
Nous discuterons alors d'une méthode de calcul tensoriel générale, valable sur l'intégralité d'une variété donnée, sans que l'utilisateur ait à préciser dans quels champs de repères et avec quelles cartes doit s'effectuer le calcul. Cela suppose que la variété soit couverte par un atlas minimal, défini carte par carte par l'utilisateur, et soit décomposée en parties parallélisables, i.e. en ouverts couverts par un champ de repères. Ces contraintes étant satisfaites, un nombre arbitraire de cartes et de champs de repères peuvent être introduits, pourvu qu'ils soient accompagnés des fonctions de transition correspondantes.
Nous décrirons l'implémentation concrète de cette méthode dans SageMath ; elle utilise fortement la structure de dictionnaire du langage Python, ainsi que le schéma parent/élément de SageMath et le modèle de coercition associé. La méthode est indépendante du moteur de calcul formel utilisé pour l'expression symbolique des composantes tensorielles dans une carte. Nous présenterons la mise en œuvre via deux moteurs de calcul formel différents : Pynac/Maxima (le défaut dans SageMath) et SymPy. Différents champs d'application seront discutés, notamment la relativité générale et ses extensions.
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera ...

53-04 ; 53Axx ; 58C25 ; 68N01 ; 68N15 ; 68U05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Let $A$ be the ring of formal power series in $n$ variables over a field $K$ of characteristic zero. Two power series $f$ and $g$ in $A$ are said to be equivalent if there exists a $K$-automorphism of $A$ transforming $f$ into $g$. In my talk I will review criteria for a power series to be equivalent to a power series which is a polynomial in at least some of the variables. For example, each power series in $A$ is equivalent to a polynomial in two variables whose coefficients are power series in $n - 2$ variables. In particular, each power series in two variables over $K$ is equivalent to a polynomial with coefficients in $K$. Similar results are valid for convergent power series, assuming that the field $K$ is endowed with an absolute value and is complete. In the special case of convergent power series over the field of real numbers some weaker notions of equivalence will be also considered. I will report on works of several mathematicians giving simple proofs. Some open problems will be included.

singularities - power series
Let $A$ be the ring of formal power series in $n$ variables over a field $K$ of characteristic zero. Two power series $f$ and $g$ in $A$ are said to be equivalent if there exists a $K$-automorphism of $A$ transforming $f$ into $g$. In my talk I will review criteria for a power series to be equivalent to a power series which is a polynomial in at least some of the variables. For example, each power series in $A$ is equivalent to a polynomial in ...

32B05 ; 58C25 ; 14B05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera également toutes les opérations sur les variétés pseudo-riemanniennes (variétés dotées d'un tenseur métrique) : connexion de Levi-Civita, courbure, géodésiques, isomorphismes musicaux et dualité de Hodge.Dans ce cours, nous introduirons tout d'abord la problématique du calcul tensoriel formel, en distinguant le calcul dit “abstrait” du calcul explicite. C'est ce dernier qui nous intéresse ici. Il se ramène in fine au calcul symbolique sur les composantes des champs tensoriels dans un champ de repères, ces composantes étant exprimées en termes des coordonnées d'une carte donnée.
Nous discuterons alors d'une méthode de calcul tensoriel générale, valable sur l'intégralité d'une variété donnée, sans que l'utilisateur ait à préciser dans quels champs de repères et avec quelles cartes doit s'effectuer le calcul. Cela suppose que la variété soit couverte par un atlas minimal, défini carte par carte par l'utilisateur, et soit décomposée en parties parallélisables, i.e. en ouverts couverts par un champ de repères. Ces contraintes étant satisfaites, un nombre arbitraire de cartes et de champs de repères peuvent être introduits, pourvu qu'ils soient accompagnés des fonctions de transition correspondantes.
Nous décrirons l'implémentation concrète de cette méthode dans SageMath ; elle utilise fortement la structure de dictionnaire du langage Python, ainsi que le schéma parent/élément de SageMath et le modèle de coercition associé. La méthode est indépendante du moteur de calcul formel utilisé pour l'expression symbolique des composantes tensorielles dans une carte. Nous présenterons la mise en œuvre via deux moteurs de calcul formel différents : Pynac/Maxima (le défaut dans SageMath) et SymPy. Différents champs d'application seront discutés, notamment la relativité générale et ses extensions.
Le calcul tensoriel sur les variétés différentielles comprend l'arithmétique des champs tensoriels, le produit tensoriel, les contractions, la symétrisation et l'antisymétrisation, la dérivée de Lie le long d'un champ vectoriel, le transport par une application différentiable (pullback et pushforward), mais aussi les opérations intrinsèques aux formes différentielles (produit intérieur, produit extérieur et dérivée extérieure). On ajoutera ...

53-04 ; 53Axx ; 58C25 ; 68N01 ; 68N15 ; 68U05

Z