En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60B20 32 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Integrals on the space U(N) of unitary matrices have a large N expansion whose coefficients count factorisations of permutations into "monotone" sequences of transpositions. We will show how this classical story can be adapted to integrals on the complex Grassmannian Gr(M,N), which leads to a 1-parameter deformation of the aforementioned enumeration. The resulting polynomials obey remarkable properties, some known and some conjectural. The notion of topological recursion inspired this work and we will briefly attempt to explain how and why. (This is joint work with Xavier Coulter and Ellena Moskovsky.)[-]
Integrals on the space U(N) of unitary matrices have a large N expansion whose coefficients count factorisations of permutations into "monotone" sequences of transpositions. We will show how this classical story can be adapted to integrals on the complex Grassmannian Gr(M,N), which leads to a 1-parameter deformation of the aforementioned enumeration. The resulting polynomials obey remarkable properties, some known and some conjectural. The ...[+]

05A15 ; 05E10 ; 15B52 ; 60B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Spectrum of random quantum channels - Lancien, Cécilia (Auteur de la Conférence) | CIRM H

Multi angle

The main question that we will investigate in this talk is: what does the spectrum of a quantum channel typically looks like? We will see that a wide class of random quantum channels generically exhibit a large spectral gap between their first and second largest eigenvalues. This is in close analogy with what is observed classically, i.e. for the spectral gap of transition matrices associated to random graphs. In both the classical and quantum settings, results of this kind are interesting because they provide examples of so-called expanders, i.e. dynamics that are converging fast to equilibrium despite their low connectivity. We will also present implications in terms of typical decay of correlations in 1D many-body quantum systems. If time allows, we will say a few words about ongoing investigations of the full spectral distribution of random quantum channels. This talk will be based on: arXiv:1906.11682 (with D. Perez-Garcia), arXiv:2302.07772 (with P. Youssef) and arXiv:2311.12368 (with P. Oliveira Santos and P. Youssef).[-]
The main question that we will investigate in this talk is: what does the spectrum of a quantum channel typically looks like? We will see that a wide class of random quantum channels generically exhibit a large spectral gap between their first and second largest eigenvalues. This is in close analogy with what is observed classically, i.e. for the spectral gap of transition matrices associated to random graphs. In both the classical and quantum ...[+]

81P45 ; 81P47 ; 60B20 ; 15B52

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some explicit bounds for the dimension of spaces where violation of the MOE occurs. Finally, I will talk more in detail about this novel strategy which consists in interpolating random matrices and free operators with the help of free stochastic calculus.[-]
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some ...[+]

60B20 ; 46L54 ; 52A22 ; 94A17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Strong convergence for tensor GUE random matrices - Yuan, Wangjun (Auteur de la Conférence) | CIRM H

Multi angle

Haagerup and Thorbjørnsen proved that iid GUEs converge strongly to free semicircular elements as the dimension grows to infinity. Motivated by considerations from quantum physics -- in particular, understanding nearest neighbor interactions in quantum spin systems -- we consider iid GUE acting on multipartite state spaces, with a mixing component on two sites and identity on the remaining sites. We show that under proper assumptions on the dimension of the sites, strong asymptotic freeness still holds. Our proof relies on an interpolation technology recently introduced by Bandeidra, Boedihardjo and van Handel. This is a joint work with Benoît Collins.[-]
Haagerup and Thorbjørnsen proved that iid GUEs converge strongly to free semicircular elements as the dimension grows to infinity. Motivated by considerations from quantum physics -- in particular, understanding nearest neighbor interactions in quantum spin systems -- we consider iid GUE acting on multipartite state spaces, with a mixing component on two sites and identity on the remaining sites. We show that under proper assumptions on the ...[+]

15B52 ; 60B20 ; 47A80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of the Stieltjes transform, based on a joint work with S. Belinschi (CNRS, U. Toulouse), M. Capitaine (CNRS,U. Toulouse) and M. Février (U. Paris-Saclay).[-]
This talk will focus on the fluctuations of a linear spectral statistic around its mean for $P\left(W_N, D_N\right)$ where $P$ is a polynomial, $W_N$ a Wigner matrix and $D_N$ a deterministic diagonal matrix. I will first consider the case when $P\left(W_N,D_N\right)=W_N+D_N$, based on a joint work with M. Février (U. Paris-Saclay). In the general case of $P$ a selfadjoint noncommutative polynomial, I will present results for the special case of ...[+]

60B20 ; 15B52 ; 60F05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an application, we define a notion of microstates entropy for traffic distribution which is additive under free traffic convolution.[-]
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an ...[+]

60B20 ; 60F10 ; 46L54

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This finding triggered an enormous research activity in recent years both in signal processing applications as well as their mathematical foundations. The present talk discusses connections of compressive sensing and time-frequency analysis (the sister of wavelet theory). In particular, we give on overview on recent results on compressive sensing with time-frequency structured random matrices.

Keywords: compressive sensing - time-frequency analysis - wavelets - sparsity - random matrices - $\ell_1$-minimization - radar - wireless communications[-]
One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This ...[+]

94A20 ; 94A08 ; 42C40 ; 60B20 ; 90C25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Free probability and random matrices - Biane, Philippe (Auteur de la Conférence) | CIRM H

Multi angle

I will explain how free probability, which is a theory of independence for non-commutative random variables, can be applied to understand the spectra of various models of random matrices.

15B52 ; 60B20 ; 46L53 ; 46L54

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable solution procedure, as well as computational simulations to see dynamics of correlation functions in action.[-]
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable ...[+]

60B20 ; 60K35 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable solution procedure, as well as computational simulations to see dynamics of correlation functions in action.[-]
We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable ...[+]

60B20 ; 60K35 ; 37K10

Sélection Signaler une erreur