En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60F15 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Concentration properties of dynamical systems - Gouëzel, Sébastien (Auteur de la Conférence) | CIRM

Multi angle

Concentration is an important property of independent random variable, showing that any reasonable function of such variables does not vary a lot around its mean. Observables generated by the iteration of a chaotic enough dynamical system often share a lot of properties with independent random variables. In this survey talk, we discuss several situations where one can prove concentration for them, in uniformly or non-uniformly hyperbolic situations. We also explain why such a property is important to answer relevant geometric or dynamical questions.
concentration - martingales - dynamical systems - Young towers - uniform hyperbolicity - moment bounds[-]
Concentration is an important property of independent random variable, showing that any reasonable function of such variables does not vary a lot around its mean. Observables generated by the iteration of a chaotic enough dynamical system often share a lot of properties with independent random variables. In this survey talk, we discuss several situations where one can prove concentration for them, in uniformly or non-uniformly hyperbolic ...[+]

37A25 ; 37A50 ; 60F15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study Bessel and Dunkl processes $\left(X_{t, k}\right)_{t>0}$ on $\mathbb{R}^{N}$ with possibly multivariate coupling constants $k \geq 0$. These processes describe interacting particle systems of Calogero-Moser-Sutherland type with $N$ particles. For the root systems $A_{N-1}$ and $B_{N}$ these Bessel processes are related with $\beta$-Hermite and $\beta$-Laguerre ensembles. Moreover, for the frozen case $k=\infty$, these processes degenerate to deterministic or pure jump processes. We use the generators for Bessel and Dunkl processes of types $\mathrm{A}$ and $\mathrm{B}$ and derive analogues of Wigner's semicircle and Marchenko-Pastur limit laws for $N \rightarrow \infty$ for the empirical distributions of the particles with arbitrary initial empirical distributions by using free convolutions. In particular, for Dunkl processes of type $\mathrm{B}$ new non-symmetric semicircle-type limit distributions on $\mathbb{R}$ appear. Our results imply that the form of the limiting measures is already completely determined by the frozen processes. Moreover, in the frozen cases, our approach leads to a new simple proof of the semicircle and Marchenko-Pastur limit laws for the empirical measures of the zeroes of Hermite and Laguerre polynomials respectively. (based on joint work with Michael Voit)[-]
We study Bessel and Dunkl processes $\left(X_{t, k}\right)_{t>0}$ on $\mathbb{R}^{N}$ with possibly multivariate coupling constants $k \geq 0$. These processes describe interacting particle systems of Calogero-Moser-Sutherland type with $N$ particles. For the root systems $A_{N-1}$ and $B_{N}$ these Bessel processes are related with $\beta$-Hermite and $\beta$-Laguerre ensembles. Moreover, for the frozen case $k=\infty$, these processes ...[+]

60F05 ; 60F15 ; 60B20 ; 60J60 ; 60K35 ; 70F10 ; 82C22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Recent results on epidemic models - Pardoux, Etienne (Auteur de la Conférence) | CIRM H

Multi angle

In 1927, two Scottish epidemiologists, Kermack and McKendrick, published a paper on a SIR epidemic model, where each infectious individual has an age of infection dependent infectivity, and a random infectious period whose law is very general. This paper was quoted a huge number of times, but almost all authors who quoted it considered the simple case of a constant infectivity, and a duration of infection following the exponential distribution, in which case the integral equation model of Kermack and McKendrick reduces to an ODE.
It is classical that an ODE epidemic model is the Law of Large Numbers limits, as the size of the population tends to infinity, of finite population stochastic Markovian epidemic models.
One of our main contributions in recent years has been to show that the integral equation epidemic model of Kermack and McKendrick is the law of large numbers limit of stochastic non Markovian epidemic models. It is not surprising that the model of Kermack and Mc Kendrick, unlike ODE models, has a memory, like non Markovian stochastic processes. One can also write the model as a PDE, where the additional variable is the age of infection of each infected individual.
Similar PDE models have been introduced by Kermack and Mc Kendrick in their 1932 and 1933 papers, where they add a progressive loss of immunity. We have also shown that this 1932-33 model is the Law of Large Numbers limit of appropriate finite population non Markovian models.
Joint work with R. Forien (INRAE Avignon, France), G. Pang (Rice Univ., Houston, Texas, USA) and A.B. Zotsa-Ngoufack (AMU and Univ. Yaoundé 1)[-]
In 1927, two Scottish epidemiologists, Kermack and McKendrick, published a paper on a SIR epidemic model, where each infectious individual has an age of infection dependent infectivity, and a random infectious period whose law is very general. This paper was quoted a huge number of times, but almost all authors who quoted it considered the simple case of a constant infectivity, and a duration of infection following the exponential distribution, ...[+]

60F15 ; 60G55 ; 92D30

Sélection Signaler une erreur