In 1927, two Scottish epidemiologists, Kermack and McKendrick, published a paper on a SIR epidemic model, where each infectious individual has an age of infection dependent infectivity, and a random infectious period whose law is very general. This paper was quoted a huge number of times, but almost all authors who quoted it considered the simple case of a constant infectivity, and a duration of infection following the exponential distribution, in which case the integral equation model of Kermack and McKendrick reduces to an ODE.
It is classical that an ODE epidemic model is the Law of Large Numbers limits, as the size of the population tends to infinity, of finite population stochastic Markovian epidemic models.
One of our main contributions in recent years has been to show that the integral equation epidemic model of Kermack and McKendrick is the law of large numbers limit of stochastic non Markovian epidemic models. It is not surprising that the model of Kermack and Mc Kendrick, unlike ODE models, has a memory, like non Markovian stochastic processes. One can also write the model as a PDE, where the additional variable is the age of infection of each infected individual.
Similar PDE models have been introduced by Kermack and Mc Kendrick in their 1932 and 1933 papers, where they add a progressive loss of immunity. We have also shown that this 1932-33 model is the Law of Large Numbers limit of appropriate finite population non Markovian models.
Joint work with R. Forien (INRAE Avignon, France), G. Pang (Rice Univ., Houston, Texas, USA) and A.B. Zotsa-Ngoufack (AMU and Univ. Yaoundé 1)
[-]
In 1927, two Scottish epidemiologists, Kermack and McKendrick, published a paper on a SIR epidemic model, where each infectious individual has an age of infection dependent infectivity, and a random infectious period whose law is very general. This paper was quoted a huge number of times, but almost all authors who quoted it considered the simple case of a constant infectivity, and a duration of infection following the exponential distribution, ...
[+]