En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60G20 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We start with a brief historical account of wavelets and of the way they shattered some of the preconceptions of the 20th century theory of statistical signal processing that is founded on the Gaussian hypothesis. The advent of wavelets led to the emergence of the concept of sparsity and resulted in important advances in image processing, compression, and the resolution of ill-posed inverse problems, including compressed sensing. In support of this change in paradigm, we introduce an extended class of stochastic processes specified by a generic (non-Gaussian) innovation model or, equivalently, as solutions of linear stochastic differential equations driven by white Lévy noise. Starting from first principles, we prove that the solutions of such equations are either Gaussian or sparse, at the exclusion of any other behavior. Moreover, we show that these processes admit a representation in a matched wavelet basis that is "sparse" and (approximately) decoupled. The proposed model lends itself well to an analytic treatment. It also has a strong predictive power in that it justifies the type of sparsity-promoting reconstruction methods that are currently being deployed in the field.

Keywords: wavelets - fractals - stochastic processes - sparsity - independent component analysis - differential operators - iterative thresholding - infinitely divisible laws - Lévy processes[-]
We start with a brief historical account of wavelets and of the way they shattered some of the preconceptions of the 20th century theory of statistical signal processing that is founded on the Gaussian hypothesis. The advent of wavelets led to the emergence of the concept of sparsity and resulted in important advances in image processing, compression, and the resolution of ill-posed inverse problems, including compressed sensing. In support of ...[+]

42C40 ; 60G20 ; 60G22 ; 60G18 ; 60H40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Large scale reduction simple - Clausel, Marianne (Auteur de la Conférence) | CIRM H

Multi angle

Consider a non-linear function $G(X_t)$ where $X_t$ is a stationary Gaussian sequence with long-range dependence. The usual reduction principle states that the partial sums of $G(X_t)$ behave asymptotically like the partial sums of the first term in the expansion of $G$ in Hermite polynomials. In the context of the wavelet estimation of the long-range dependence parameter, one replaces the partial sums of $G(X_t)$ by the wavelet scalogram, namely the partial sum of squares of the wavelet coefficients. Is there a reduction principle in the wavelet setting, namely is the asymptotic behavior of the scalogram for $G(X_t)$ the same as that for the first term in the expansion of $G$ in Hermite polynomial? The answer is negative in general. This paper provides a minimal growth condition on the scales of the wavelet coefficients which ensures that the reduction principle also holds for the scalogram. The results are applied to testing the hypothesis that the long-range dependence parameter takes a specific value. Joint work with François Roueff and Murad S. Taqqu

Keywords: long-range dependence; long memory; self-similarity; wavelet transform; estimation; hypothesis
testing[-]
Consider a non-linear function $G(X_t)$ where $X_t$ is a stationary Gaussian sequence with long-range dependence. The usual reduction principle states that the partial sums of $G(X_t)$ behave asymptotically like the partial sums of the first term in the expansion of $G$ in Hermite polynomials. In the context of the wavelet estimation of the long-range dependence parameter, one replaces the partial sums of $G(X_t)$ by the wavelet scalogram, ...[+]

42C40 ; 60G18 ; 62M15 ; 60G20 ; 60G22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study a class of individual-based, fixed-population size epidemic models under general assumptions, e.g., heterogeneous contact rates encapsulating changes in behavior and/or enforcement of control measures. We show that the large-population dynamics are deterministic and relate to the Kermack-McKendrick PDE. Our assumptions are minimalistic in the sense that the only important requirement is that the basic reproduction number of the epidemic $R_0$ be finite, and allow us to tackle both Markovian and non-Markovian dynamics. The novelty of our approach is to study the "infection graph" of the population. We show local convergence of this random graph to a Poisson (Galton-Watson) marked tree, recovering Markovian backward-in-time dynamics in the limit as we trace back the transmission chain leading to a focal infection. This effectively models the process of contact tracing in a large population. It is expressed in terms of the Doob h-transform of a certain renewal process encoding the time of infection along the chain. Our results provide a mathematical formulation relating a fundamental epidemiological quantity, the generation time distribution, to the successive time of infections along this transmission chain.[-]
We study a class of individual-based, fixed-population size epidemic models under general assumptions, e.g., heterogeneous contact rates encapsulating changes in behavior and/or enforcement of control measures. We show that the large-population dynamics are deterministic and relate to the Kermack-McKendrick PDE. Our assumptions are minimalistic in the sense that the only important requirement is that the basic reproduction number of the epidemic ...[+]

60F17 ; 60J80 ; 60G20

Sélection Signaler une erreur