En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60G50 18 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 1 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 2 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on groups - part 3 - Aoun, Richard (Auteur de la Conférence) | CIRM H

Multi angle

Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a probabilistic point of view, this additional structure serves as an extra tool, facilitating the study of the behaviour of the random walk on the underlying space. Regarding groups and their actions, random walks offer a means to explore generic or non-generic parts of groups and, at times, even to demonstrate intrinsic geometric properties, as is clearly shown by Kesten's amenability criterion (1959). This is an introductory course on the topic. Emphasis will be given on the interplay between probability and the structure of the group. The course will also provide insights into current research questions. Here is an outline of each session :
(1) Equivalent of Pólya's criterion for random walks on groups and rigidity theorems : does walking randomly on a given group in two different ways affect the recurrence of the walks ?
(2) Kesten's probabilistic criterion of the amenability of a finitely generated group ; defined in this course in terms of isoperimetric profile. The tools in 1) and 2) are essentially coming from analysis on groups.
(3) Tools coming from subadditivity to study the behaviour of a random walk on a group (drift, entropy and expansion of the random walk, etc.)[-]
Random walks is a topic at the crossroads of probability, ergodic theory, potential theory, harmonic analysis, geometry, and graph theory. Its roots can be traced back to the famous article by Pólya in 1921, which characterizes the recurrence of random walks on $\mathbb{Z}^{d}$ in terms of the dimension $d$. When random walks take place on a group, or more generally on a homogeneous space, it provides an even richer framework for study. From a ...[+]

20P05 ; 60G50 ; 20F65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
This talk is based on a work jointly with Timothy Budd (Copenhagen), Nicolas Curien (Orsay) and Igor Kortchemski (Ecole Polytechnique).
Consider a self-similar Markov process $X$ on $[0,\infty)$ which converges at infinity a.s. We interpret $X(t)$ as the size of a typical cell at time $t$, and each negative jump as a birth event. More precisely, if ${\Delta}X(s) = -y < 0$, then $s$ is the birth at time of a daughter cell with size $y$ which then evolves independently and according to the same dynamics. In turn, daughter cells give birth to granddaughter cells each time they make a negative jump, and so on.
The genealogical structure of the cell population can be described in terms of a branching random walk, and this gives rise to remarkable martingales. We analyze traces of these mar- tingales in physical time, and point at some applications for self-similar growth-fragmentation processes and for planar random maps.[-]
This talk is based on a work jointly with Timothy Budd (Copenhagen), Nicolas Curien (Orsay) and Igor Kortchemski (Ecole Polytechnique).
Consider a self-similar Markov process $X$ on $[0,\infty)$ which converges at infinity a.s. We interpret $X(t)$ as the size of a typical cell at time $t$, and each negative jump as a birth event. More precisely, if ${\Delta}X(s) = -y < 0$, then $s$ is the birth at time of a daughter cell with size $y$ which then ...[+]

60G51 ; 60G18 ; 60J75 ; 60G44 ; 60G50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random walks on dynamical percolation - Sousi, Perla (Auteur de la Conférence) | CIRM H

Multi angle

We study the behaviour of random walk on dynamical percolation. In this model, the edges of a graph are either open or closed and refresh their status at rate $\mu$, while at the same time a random walker moves on $G$ at rate 1, but only along edges which are open. On the d-dimensional torus with side length $n$, when the bond parameter is subcritical, the mixing times for both the full system and the random walker were determined by Peres, Stauffer and Steif. I will talk about the supercritical case, which was left open, but can be analysed using evolving sets.

Joint work with Y. Peres and J. Steif.[-]
We study the behaviour of random walk on dynamical percolation. In this model, the edges of a graph are either open or closed and refresh their status at rate $\mu$, while at the same time a random walker moves on $G$ at rate 1, but only along edges which are open. On the d-dimensional torus with side length $n$, when the bond parameter is subcritical, the mixing times for both the full system and the random walker were determined by Peres, ...[+]

60K35 ; 60J10 ; 60G50 ; 82B43

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Self-interacting walks and uniform spanning forests - Peres, Yuval (Auteur de la Conférence) | CIRM H

Post-edited

In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the component structure of the uniform spanning forest in $\mathbb{Z}^d$ changes every dimension for $d > 8$. This sharpens an earlier result of Benjamini, Kesten, Schramm and the speaker (Annals Math 2004), where we established a phase transition every four dimensions. The proofs are based on a the connection to loop-erased random walks.[-]
In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the ...[+]

05C05 ; 05C80 ; 60G50 ; 60J10 ; 60K35 ; 82B43

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will introduce two statistical mechanics models on the lattice. The spins in these models have a hyperbolic symmetry. Correlations for these models can be expressed in terms of a random walk in a highly correlated random environment. In the SUSY hyperbolic case these walks are closely related to the vertex reinforced jump process and to the edge reinforced random walk. (Joint work with M. Disertori and M. Zirnbauer.)

60K37 ; 60G50 ; 60K35 ; 60J75 ; 81T25 ; 81T60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider a model for a growing subset of a euclidean lattice (an "aggregate") where at each step one choose a random point from the existing aggregate, starts a random walk from that point, and adds the point of exit to the aggregate. We show that the limiting shape is a ball. Joint work with Itai Benjamini, Hugo Duminil-Copin and Cyril Lucas.

60G50 ; 60J60 ; 60K35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Condensation in random trees 1/3 - Kortchemski, Igor (Auteur de la Conférence) | CIRM H

Multi angle

We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson trees.
Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.[-]
We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms ...[+]

60J80 ; 60G50 ; 05C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Condensation in random trees 2/3 - Kortchemski, Igor (Auteur de la Conférence) | CIRM H

Multi angle

We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson trees.
Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.[-]
We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms ...[+]

60J80 ; 60G50 ; 05C05

Sélection Signaler une erreur