En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60G55 28 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi.[-]
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...[+]

60D05 ; 60F05 ; 52A22 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that random walk on a stationary random graph with positive anchored expansion and exponential volume growth has positive speed. We also show that two families of random triangulations of the hyperbolic plane, the hyperbolic Poisson Voronoi tessellation and the hyperbolic Poisson Delaunay triangulation, have 1-skeletons with positive anchored expansion. As a consequence, we show that the simple random walks on these graphs have positive speed. We include a section of open problems and conjectures on the topics of stationary geometric random graphs and the hyperbolic Poisson Voronoi tessellation. [-]
We show that random walk on a stationary random graph with positive anchored expansion and exponential volume growth has positive speed. We also show that two families of random triangulations of the hyperbolic plane, the hyperbolic Poisson Voronoi tessellation and the hyperbolic Poisson Delaunay triangulation, have 1-skeletons with positive anchored expansion. As a consequence, we show that the simple random walks on these graphs have positive ...[+]

05C80 ; 60D05 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we address generalisation of stationary Hawkes processes in order to allow for a time-evolutive second-order analysis. A formal derivation of a time-frequency analysis via a time-varying Bartlett spectrum is given by introduction of the new class of locally stationary Hawkes process. This model is most appropriate for the analysis of (potentially very) long stretches of observed self-exciting point processes, as introduced in the stationary case by A. Hawkes (1971), in one dimension (temporal) or in a higher dimensional (i.e. spatial) context. Motivated by the concept of locally stationary autoregressive processes, we apply however inherently different techniques to describe and capture the time-varying dynamics of self-exciting point processes in the frequency domain. In particular we derive a stationary approximation of the Laplace transform of a locally stationary Hawkes process. This allows us to define a local intensity function and a local Bartlett spectrum which can be used to compute approximations of first and second order moments of the process. We will also present some insightful simulation studies and propose and discuss preliminary asymptotic results on how to estimate the first and second order structure of the process. Joint work with François Roueff and Laure Sansonnet

Keywords: locally stationary processes; Hawkes processes; Bartlett spectrum; time frequency analysis; point processes[-]
In this talk we address generalisation of stationary Hawkes processes in order to allow for a time-evolutive second-order analysis. A formal derivation of a time-frequency analysis via a time-varying Bartlett spectrum is given by introduction of the new class of locally stationary Hawkes process. This model is most appropriate for the analysis of (potentially very) long stretches of observed self-exciting point processes, as introduced in the ...[+]

46N30 ; 60G55 ; 62M15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes.

60G22 ; 60G55 ; 91B30 ; 60K05 ; 33E12

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The two-periodic Aztec diamond is a dimer or random tiling model with three phases, solid, liquid and gas. The dimers form a determinantal point process with a somewhat complicated but explicit correlation kernel. I will discuss in some detail how the Airy point process can be found at the liquid-gas boundary by looking at suitable averages of height function differences. The argument is a rather complicated analysis using the cumulant approach and subtle cancellations. Joint work with Vincent Beffara and Sunil Chhita.[-]
The two-periodic Aztec diamond is a dimer or random tiling model with three phases, solid, liquid and gas. The dimers form a determinantal point process with a somewhat complicated but explicit correlation kernel. I will discuss in some detail how the Airy point process can be found at the liquid-gas boundary by looking at suitable averages of height function differences. The argument is a rather complicated analysis using the cumulant approach ...[+]

60K35 ; 60G55 ; 60C05 ; 82B20 ; 05B45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A determinantal point process governed by a Hermitian contraction kernel $K$ on a measure space $E$ remains determinantal when conditioned on its configuration on a subset $B \subset E$. Moreover, the conditional kernel can be chosen canonically in a way that is "local" in a non-commutative sense, i.e. invariant under "restriction" to closed subspaces $L^2(B) \subset P \subset L^2(E)$. Using the properties of the canonical conditional kernel we establish a conjecture of Lyons and Peres: if $K$ is a projection then almost surely all functions in its image can be recovered by sampling at the points of the process.
Joint work with Alexander Bufetov and Yanqi Qiu.[-]
A determinantal point process governed by a Hermitian contraction kernel $K$ on a measure space $E$ remains determinantal when conditioned on its configuration on a subset $B \subset E$. Moreover, the conditional kernel can be chosen canonically in a way that is "local" in a non-commutative sense, i.e. invariant under "restriction" to closed subspaces $L^2(B) \subset P \subset L^2(E)$. Using the properties of the canonical conditional kernel ...[+]

60G55 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A functional limit theorem for the sine-process - Dymov, Andrey (Auteur de la Conférence) | CIRM H

Multi angle

It is well-known that a large class of determinantal processes including the sine-process satisfies the Central Limit Theorem. For many dynamical systems satisfying the CLT the Donsker Invariance Principle also takes place. The latter states that, in some appropriate sense, trajectories of the system can be approximated by trajectories of the Brownian motion. I will present results of my joint work with A. Bufetov, where we prove a functional limit theorem for the sine-process, which turns out to be very different from the Donsker Invariance Principle. We show that the anti-derivative of our process can be approximated by the sum of a linear Gaussian process and small independent Gaussian fluctuations whose covariance matrix we compute explicitly.[-]
It is well-known that a large class of determinantal processes including the sine-process satisfies the Central Limit Theorem. For many dynamical systems satisfying the CLT the Donsker Invariance Principle also takes place. The latter states that, in some appropriate sense, trajectories of the system can be approximated by trajectories of the Brownian motion. I will present results of my joint work with A. Bufetov, where we prove a functional ...[+]

60G55 ; 60F05 ; 60G60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under certain natural group action of the group of compactly supported diffeomorphisms of the phase space. This talk is based partly on the joint works with Alexander I. Bufetov and partly on a more recent joint work with Alexander I. Bufetov and Shilei Fan.[-]
Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under ...[+]

60G55 ; 46E20 ; 30H20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The Poisson-saddlepoint approximation - Baddeley, Adrian (Auteur de la Conférence) | CIRM H

Multi angle

Gibbs spatial point processes are important models in theoretical physics and in spatial statistics. After a brief survey of Gibbs point processes, we will present a method for approximating their most important characteristic, the intensity of the process. The method has some affinity with the classical saddlepoint approximations of probability densities. For pairwise-interaction processes the approximation can be computed directly : it performs very well in many cases, but not in all cases. For higher-order interactions, we invoke limit results from stochastic geometry due to Roger Miles and the late Peter Hall, in order to compute the approximation.

Joint work with Gopalan Nair.[-]
Gibbs spatial point processes are important models in theoretical physics and in spatial statistics. After a brief survey of Gibbs point processes, we will present a method for approximating their most important characteristic, the intensity of the process. The method has some affinity with the classical saddlepoint approximations of probability densities. For pairwise-interaction processes the approximation can be computed directly : it ...[+]

60G55 ; 82B21 ; 62E17

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Determinantal point processes - Lecture 1 - Bufetov, Alexander (Auteur de la Conférence) | CIRM H

Multi angle

Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open problems.

PROGRAMME.
1. Examples.
2. Limit theorems.
3. Palm-Khintchine theory. Quasi-symmetries.
4. Determinantal point processes and extrapolation.[-]
Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open ...[+]

60G55

Sélection Signaler une erreur