En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60G70 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

When J. Ginibre met E. Schrödinger - Bothner, Thomas (Auteur de la Conférence) | CIRM H

Multi angle

The real Ginibre ensemble consists of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibe matrix follows a different limiting law for purely real eigenvalues than for non-real ones. Building on previous work by Rider, Sinclair and Poplavskyi, Tribe, Zaboronski, we will show that the limiting distribution of the largest real eigenvalue admits a closed form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. This system is directly related to several of the most interesting nonlinear evolution equations in 1+1 dimensions which are solvable by the inverse scattering method, for instance the nonlinear Schr¨odinger equation. The results of this talk are based on the recent preprint arXiv:1808.02419, joint with Jinho Baik.[-]
The real Ginibre ensemble consists of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibe matrix follows a different limiting law for purely real eigenvalues than for non-real ones. Building on previous work by Rider, Sinclair and ...[+]

60B20 ; 45M05 ; 60G70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Branching random walk with innite progeny mean - Hazra, Rajat Subhra (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we discuss the extremes of branching random walks under the assumption that the underlying Galton-Watson tree has in nite progeny mean. It is assumed that the displacements are either regularly varying or they have lighter tails. In the regularly varying case, it is shown that the point process sequence of normalized extremes converges to a Poisson random measure. In the lighter-tailed case, we study the asymptotics of the scaled position of the rightmost particle in the n-th generation and show the existence of a non-trivial constant. This is a joint work with Souvik Ray (Stanford), Parthanil Roy (ISI, Bangalore) and Philippe Soulier (Universite Paris Nanterre).[-]
In this talk we discuss the extremes of branching random walks under the assumption that the underlying Galton-Watson tree has in nite progeny mean. It is assumed that the displacements are either regularly varying or they have lighter tails. In the regularly varying case, it is shown that the point process sequence of normalized extremes converges to a Poisson random measure. In the lighter-tailed case, we study the asymptotics of the scaled ...[+]

60J80 ; 05C81 ; 60G70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I'll present two problems where data naturally present a graphical structure: the analysis of champions in a tournament and the problem of matching.
I'll present for each problem intuitive results in toy models and discuss various mathematical tools involved to prove them.
I'll also present many open problems, hopefully convincing people to jump in this growing area.

60K37 ; 60G70 ; 60K40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Conditional independence in extremes - Strokorb, Kirstin (Auteur de la Conférence) | CIRM H

Multi angle

Statistical modelling of complex dependencies in extreme events requires meaningful sparsity structures in multivariate extremes. In this context two perspectives on conditional independence and graphical models have recently emerged: One that focuses on threshold exceedances and multivariate pareto distributions, and another that focuses on max-linear models and directed acyclic graphs. What connects these notions is the exponent measure that lies at the heart of each approach. In this work we develop a notion of conditional independence defined directly on the exponent measure (and even more generally on measures that explode at the origin) that extends recent work of Engelke and Hitz (2019), who had been confined to homogeneous measures with density. We prove easier checkable equivalent conditions to verify this new conditional independence in terms of a reduction to simple test classes, probability kernels and density factorizations. This provides a pathsway to graphical modelling among general multivariate (max-)infinitely distributions. Structural max-linear models turn out to form a Bayesian network with respect to our new form of conditional independence.[-]
Statistical modelling of complex dependencies in extreme events requires meaningful sparsity structures in multivariate extremes. In this context two perspectives on conditional independence and graphical models have recently emerged: One that focuses on threshold exceedances and multivariate pareto distributions, and another that focuses on max-linear models and directed acyclic graphs. What connects these notions is the exponent measure that ...[+]

62H22 ; 60G70 ; 60G51

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
La théorie des valeurs extrêmes décrit le comportement du maximum d'une suite de variables aléatoires i.i.d. à valeurs réelles. L'une des distributions limites possibles, la loi de Gumbel, apparaît également dans l'asymptotique en bruit faible du temps de transition réactive pour des équations différentielles stochastiques métastables. Nous décrivons des résultats récents en dimension 1 et leur interprétation, et donnons un résultat en dimension 2, motivé par le phénomène de synchronisation d'oscillateurs couplés.[-]
La théorie des valeurs extrêmes décrit le comportement du maximum d'une suite de variables aléatoires i.i.d. à valeurs réelles. L'une des distributions limites possibles, la loi de Gumbel, apparaît également dans l'asymptotique en bruit faible du temps de transition réactive pour des équations différentielles stochastiques métastables. Nous décrivons des résultats récents en dimension 1 et leur interprétation, et donnons un résultat en dimension ...[+]

60G70 ; 37H10

Sélection Signaler une erreur