En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 60H15 23 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Integrable probability - Lecture 1 - ... (Auteur de la Conférence) | H

Post-edited

A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.

Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations[-]
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Integrable probability - Lecture 2 - ... (Auteur de la Conférence) | H

Multi angle

A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.

Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations[-]
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Integrable probability - Lecture 3 - ... (Auteur de la Conférence) | H

Multi angle

A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.

Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations[-]
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Pathwise regularisation by noise in PDEs - ... (Auteur de la Conférence) | H

Post-edited

We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear stochastic transport equations and non-linear modulated dispersive PDEs. It is possible to show that the sample paths of Brownian motion or fractional Brownian motion and related processes have almost surely this kind of irregularity. (joint work with R. Catellier and K. Chouk)[-]
We discuss some examples of the "good" effects of "very bad", "irregular" functions. In particular we will look at non-linear differential (partial or ordinary) equations perturbed by noise. By defining a suitable notion of "irregular" noise we are able to show, in a quantitative way, that the more the noise is irregular the more the properties of the equation are better. Some examples includes: ODE perturbed by additive noise, linear ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Inhomogeneities and temperature effects in Bose-Einstein condensates - ... (Auteur de la Conférence) | H

Post-edited

We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite temperature. We will also describe the numerical methods which have been developed for those models in the framework of the ANR project Becasim. These are joint works with Reika Fukuizumi, Arnaud Debussche, and Romain Poncet.[-]
We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Weak universality of the KPZ equation with arbitrary nonlinearities - ... (Auteur de la Conférence) | H

Post-edited

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An introduction to BSDE - ... (Auteur de la Conférence) | H

Multi angle

Backward stochastic differential equations have been a very successful and active tool for stochastic finance and insurance for some decades. More generally they serve as a central method in applications of control theory in many areas. We introduce BSDE by looking at a simple utility optimization problem in financial stochastics. We shall derive an important class of BSDE by applying the martingale optimality principle to solve an optimal investment problem for a financial agent whose income is partly affected by market external risk. We then present the basics of existence and uniqueness theory for solutions to BSDE the coefficients of which satisfy global Lipschitz conditions.[-]
Backward stochastic differential equations have been a very successful and active tool for stochastic finance and insurance for some decades. More generally they serve as a central method in applications of control theory in many areas. We introduce BSDE by looking at a simple utility optimization problem in financial stochastics. We shall derive an important class of BSDE by applying the martingale optimality principle to solve an optimal ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Branching for PDEs - ... (Auteur de la Conférence) | H

Multi angle

Branching methods have recently been developed to solve some PDEs. Starting from Mckean formulation, we give the initial branching method to solve the KPP equation. We then give a formulation to solve non linear equation with a non linearity polynomial in the value function u. The methodology is extended for general non linearities in the value function u. Then we develop the methodology to solve non linear equation with non linearities polynomial in u and Du with convergence results. At last we give some numerical schemes to solve the semi-linear case and even the full non linear case but currently without convergence results.[-]
Branching methods have recently been developed to solve some PDEs. Starting from Mckean formulation, we give the initial branching method to solve the KPP equation. We then give a formulation to solve non linear equation with a non linearity polynomial in the value function u. The methodology is extended for general non linearities in the value function u. Then we develop the methodology to solve non linear equation with non linearities ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will first recall, for a general audience, the use of Monte Carlo and Multi-level Monte Carlo methods in the context of Uncertainty Quantification. Then we will discuss the recently developed Adaptive Multilevel Monte Carlo (MLMC) Methods for (i) It Stochastic Differential Equations, (ii) Stochastic Reaction Networks modeled by Pure Jump Markov Processes and (iii) Partial Differential Equations with random inputs. In this context, the notion of adaptivity includes several aspects such as mesh refinements based on either a priori or a posteriori error estimates, the local choice of different time stepping methods and the selection of the total number of levels and the number of samples at different levels. Our Adaptive MLMC estimator uses a hierarchy of adaptively refined, non-uniform time discretizations, and, as such, it may be considered a generalization of the uniform discretization MLMC method introduced independently by M. Giles and S. Heinrich. In particular, we show that our adaptive MLMC algorithms are asymptotically accurate and have the correct complexity with an improved control of the multiplicative constant factor in the asymptotic analysis. In this context, we developed novel techniques for estimation of parameters needed in our MLMC algorithms, such as the variance of the difference between consecutive approximations. These techniques take particular care of the deepest levels, where for efficiency reasons only few realizations are available to produce essential estimates. Moreover, we show the asymptotic normality of the statistical error in the MLMC estimator, justifying in this way our error estimate that allows prescribing both the required accuracy and confidence level in the final result. We present several examples to illustrate the above results and the corresponding computational savings.[-]
We will first recall, for a general audience, the use of Monte Carlo and Multi-level Monte Carlo methods in the context of Uncertainty Quantification. Then we will discuss the recently developed Adaptive Multilevel Monte Carlo (MLMC) Methods for (i) It Stochastic Differential Equations, (ii) Stochastic Reaction Networks modeled by Pure Jump Markov Processes and (iii) Partial Differential Equations with random inputs. In this context, the notion ...[+]

Sélection Signaler une erreur