Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dans les années 1970, William Tutte développa une approche algébrique, basée sur des «invariants», pour résoudre une équation fonctionnelle qui apparait dans le dénombrement de triangulations colorées. La transformée de Laplace de la distribution stationnaire du mouvement brownien réfléchi dans des cônes satisfait une équation similaire. Pour être applicable, cette méthode requiert l'existence de deux fonctions appelées respectivement invariant et fonction de découplage. Tous les modèles ont des invariants mais on démontre que l'existence de fonctions de découplage équivaut à une condition géométrique simple sur les angles de réflexion. Pour les modèles qui ont une fonction de découplage, on obtient une expression explicite sans intégrale de la transformée de Laplace en fonction des invariants. En particulier, on obtient à nouveau une formule pour la transformée de Laplace de plusieurs cas bien connus, comme la skew symétrie, les réflexions orthogonales ou le résultat de Dieker et Moriarty qui caractérise les densités stationnaires qui s'écrivent sous la forme d'une somme d'exponentielles. Cette méthode permet de plus de caractériser la nature algébrique de la transformée de Laplace en fonction des modèles. Cet exposé est issu d'un travail en collaboration avec M. Bousquet-Mélou, A. Elvey Price, C. Hardouin et K. Raschel.
[-]
Dans les années 1970, William Tutte développa une approche algébrique, basée sur des «invariants», pour résoudre une équation fonctionnelle qui apparait dans le dénombrement de triangulations colorées. La transformée de Laplace de la distribution stationnaire du mouvement brownien réfléchi dans des cônes satisfait une équation similaire. Pour être applicable, cette méthode requiert l'existence de deux fonctions appelées respectivement invariant ...
[+]
60J65 ; 60E10 ; 60C05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The freezing in the title refers to a property of point processes: let $\left ( X_i \right )_{i\geq 1}$ denote a point process which is locally finite and has finite maximum. For a function f continuous of compact support, define $Z_f=f\left ( X_1 \right )+f\left ( X_2 \right )+....$ We say that freezing occurs if the Laplace transform of $Z_f$ depends on f only through a shift. I will discuss this notion and its equivalence with other properties of the point process. In particular, such freezing occurs for the extremal process in branching random walks and in certain versions of the (discrete) two dimensional GFF.
Joint work with Eliran Subag
[-]
The freezing in the title refers to a property of point processes: let $\left ( X_i \right )_{i\geq 1}$ denote a point process which is locally finite and has finite maximum. For a function f continuous of compact support, define $Z_f=f\left ( X_1 \right )+f\left ( X_2 \right )+....$ We say that freezing occurs if the Laplace transform of $Z_f$ depends on f only through a shift. I will discuss this notion and its equivalence with other ...
[+]
60G55 ; 60J65 ; 60J80
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Motivated by Krioukov et al.'s model of random hyperbolic graphs for real-world networks, and inspired by the analysis of a dynamic model of graphs in Euclidean space by Peres et al., we introduce a dynamic model of hyperbolic graphs in which vertices are allowed to move according to a Brownian motion maintaining the distribution of vertices in hyperbolic space invariant. For different parameters of the speed of angular and radial motion, we analyze tail bounds for detection times of a fixed target and obtain a complete picture, for very different regimes, of how and when the target is detected: as a function of the time passed, we characterize the subset of the hyperbolic space where particles typically detecting the target are initially located. We overcome several substantial technical diffculties not present in Euclidean space, and provide a complete picture on tail bounds. On the way, we obtain also new results for the time more general continuous processes with drift and reflecting barrier spent in certain regions, and we also obtain improved bounds for independent sums of Pareto random variables. Joint work with Marcos Kiwi and Amitai Linker.
[-]
Motivated by Krioukov et al.'s model of random hyperbolic graphs for real-world networks, and inspired by the analysis of a dynamic model of graphs in Euclidean space by Peres et al., we introduce a dynamic model of hyperbolic graphs in which vertices are allowed to move according to a Brownian motion maintaining the distribution of vertices in hyperbolic space invariant. For different parameters of the speed of angular and radial motion, we ...
[+]
05C80 ; 60J65 ; 05C82