m

F Nous contacter


0

Documents  60J55 | enregistrements trouvés : 3

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In recent years, interest in time changes of stochastic processes according to irregular measures has arisen from various sources. Fundamental examples of such time-changed processes include the so-called Fontes-Isopi-Newman (FIN) diffusion and fractional kinetics (FK) processes, the introduction of which were partly motivated by the study of the localization and aging properties of physical spin systems, and the two- dimensional Liouville Brownian motion, which is the diffusion naturally associated with planar Liouville quantum gravity.
This FIN diffusions and FK processes are known to be the scaling limits of the Bouchaud trap models, and the two-dimensional Liouville Brownian motion is conjectured to be the scaling limit of simple random walks on random planar maps.
In the first part of my talk, I will provide a general framework for studying such time changed processes and their discrete approximations in the case when the underlying stochastic process is strongly recurrent, in the sense that it can be described by a resistance form, as introduced by J. Kigami. In particular, this includes the case of Brownian motion on tree-like spaces and low-dimensional self-similar fractals.
In the second part of my talk, I will discuss heat kernel estimates for (generalized) FIN diffusions and FK processes on metric measure spaces.
This talk is based on joint works with D. Croydon (Warwick) and B.M. Hambly (Oxford) and with Z.-Q. Chen (Seattle), P. Kim (Seoul) and J. Wang (Fuzhou).
In recent years, interest in time changes of stochastic processes according to irregular measures has arisen from various sources. Fundamental examples of such time-changed processes include the so-called Fontes-Isopi-Newman (FIN) diffusion and fractional kinetics (FK) processes, the introduction of which were partly motivated by the study of the localization and aging properties of physical spin systems, and the two- dimensional Liouville ...

60J35 ; 60J55 ; 60J10 ; 60J45 ; 60K37

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Consider the following stochastic heat equation,
\[
\frac{\partial u_t(x)}{\partial t}=-\nu(-\Delta)^{\alpha/2} u_t(x)+\sigma(u_t(x))\dot{F}(t,\,x), \quad t>0, \; x \in \mathbb{R}^d.
\]
Here $-\nu(-\Delta)^{\alpha/2}$ is the fractional Laplacian with $\nu>0$ and $\alpha \in (0,2]$, $\sigma: \mathbb{R}\rightarrow \mathbb{R}$ is a globally Lipschitz function, and $\dot{F}(t,\,x)$ is a Gaussian noise which is white in time and colored in space. Under some suitable conditions, we will explore the effect of the initial data on the spatial asymptotic properties of the solution. We also prove a strong comparison principle thus filling an important gap in the literature.
Joint work with Mohammud Foondun (University of Strathclyde).
Consider the following stochastic heat equation,
\[
\frac{\partial u_t(x)}{\partial t}=-\nu(-\Delta)^{\alpha/2} u_t(x)+\sigma(u_t(x))\dot{F}(t,\,x), \quad t>0, \; x \in \mathbb{R}^d.
\]
Here $-\nu(-\Delta)^{\alpha/2}$ is the fractional Laplacian with $\nu>0$ and $\alpha \in (0,2]$, $\sigma: \mathbb{R}\rightarrow \mathbb{R}$ is a globally Lipschitz function, and $\dot{F}(t,\,x)$ is a Gaussian noise which is white in time and colored in space. ...

60H15 ; 60J55 ; 35R60

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Bessel-like SPDEs
Zambotti, Lorenzo (Auteur de la Conférence) | CIRM (Editeur )

I will discuss integration by parts formulae on the law of the Bessel bridge of dimension less than $3$ and show how this allows to conjecture the form of an associated SPDE. The most relevant case is the dimension equal to $1$, which is expected to be the scaling limit of critical wetting models.

60H15 ; 60J55

Filtrer

Domaine
Codes MSC
Audience

Z