m

F Nous contacter


0

Documents  65N30 | enregistrements trouvés : 14

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  25+ years of wavelets for PDEs
Kunoth, Angela (Auteur de la Conférence) | CIRM (Editeur )

Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality and optimality of approximations and related concepts from approximation the- ory. We will see that wavelet bases can serve as a basic ingredient, both for the theory as well as for algorithmic realizations. Particularly for situations where solutions exhibit singularities, wavelet concepts enable adaptive appproximations for which convergence and optimal algorithmic complexity can be established. I will describe corresponding implementations based on biorthogonal spline-wavelets.
Moreover, wavelet-related concepts have triggered new developments for efficiently solving complex systems of PDEs, as they arise from optimization problems with PDEs.
Ingrid Daubechies' construction of orthonormal wavelet bases with compact support published in 1988 started a general interest to employ these functions also for the numerical solution of partial differential equations (PDEs). Concentrating on linear elliptic and parabolic PDEs, I will start from theoretical topics such as the well-posedness of the problem in appropriate function spaces and regularity of solutions and will then address quality ...

65T60 ; 94A08 ; 65N12 ; 65N30 ; 49J20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Many PDEs arising in physical systems have symmetries and conservation laws that are local in space. However, classical finite element methods are described in terms of spaces of global functions, so it is difficult even to make sense of such local properties. In this talk, I will describe how hybrid finite element methods, based on non-overlapping domain decomposition, provide a way around this local-vs.-global obstacle. Specifically, I will discuss joint work with Robert McLachlan on multisymplectic hybridizable discontinuous Galerkin methods for Hamiltonian PDEs, as well as joint work with Yakov Berchenko-Kogan on symmetry-preserving hybrid finite element methods for gauge theory.
Many PDEs arising in physical systems have symmetries and conservation laws that are local in space. However, classical finite element methods are described in terms of spaces of global functions, so it is difficult even to make sense of such local properties. In this talk, I will describe how hybrid finite element methods, based on non-overlapping domain decomposition, provide a way around this local-vs.-global obstacle. Specifically, I will ...

65N30 ; 37K05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Time parallel time integration
Gander, Martin (Auteur de la Conférence) | CIRM (Editeur )

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Tutorial with Freefem++
Hecht, Frédéric (Auteur de la Conférence) | CIRM (Editeur )

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three fields methods, fictitious domain methods or certified reduced basis. We shall present an overview of the various ingredients as well as some illustrations. The ingredients include a very expressive embedded language, seamless interpolation, mesh adaption, seamless parallelisation. As to the illustrations, they exercise the versatility of the framework either by allowing the development and/or numerical verification of (new) mathematical methods or the development of large multi-physics applications - e.g. fluid-structure interaction using either an Arbitrary Lagrangian Eulerian formulation or a levelset based one; high field magnets modeling which involves electro-thermal, magnetostatics, mechanical and thermo-hydraulics model; ... - The range of users span from mechanical engineers in industry, physicists in complex fluids, computer scientists in biomedical applications to applied mathematicians thanks to the shared common mathematical embedded language hiding linear algebra and computer science complexities.
I will review (some of) the HPC solution strategies developed in Feel++. We present our advances in developing a language specific to partial differential equations embedded in C++. We have been developing the Feel++ framework (Finite Element method Embedded Language in C++) to the point where it allows to use a very wide range of Galerkin methods and advanced numerical methods such as domain decomposition methods including mortar and three ...

65N30 ; 65N55 ; 65Y05 ; 65Y15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In domain decomposition methods, most of the computational cost lies in the successive solutions of the local problems in subdomains via forward-backward substitutions and in the orthogonalization of interface search directions. All these operations are performed, in the best case, via BLAS-1 or BLAS-2 routines which are inefficient on multicore systems with hierarchical memory. A way to improve the parallel efficiency of the method consists in working with several search directions, since multiple forward-backward substitutions and reorthogonalizations involve BLAS-3 routines. In the case of a problem with several right-hand-sides, using a block Krylov method is a straightforward way to work with multiple search directions. This will be illustrated with an application in electromagnetism using FETI-2LM method. For problems with a single right-hand-side, deriving several search directions that make sense from the optimal one constructed by the Krylov method is not so easy. The recently developed S-FETI method gives a very good approach that does not only improve parallel efficiency but can also reduce the global computational cost in the case of very heterogeneous problems.
In domain decomposition methods, most of the computational cost lies in the successive solutions of the local problems in subdomains via forward-backward substitutions and in the orthogonalization of interface search directions. All these operations are performed, in the best case, via BLAS-1 or BLAS-2 routines which are inefficient on multicore systems with hierarchical memory. A way to improve the parallel efficiency of the method consists in ...

65N22 ; 65N30 ; 65N55 ; 65Y05 ; 65F10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Parametrized PDE (Partial Differential Equation) Apps are PDE solvers which satisfy stringent per-query performance requirements: less-than or approximate 5-second problem specification time; less-than or approximate 5-second problem solution time, field and outputs; less-than or approximate 5% solution error, specified metrics; less-than or approximate 5-second solution visualization time. Parametrized PDE apps are relevant in many-query, real-time, and interactive contexts such as design, parameter estimation, monitoring, and education.
In this talk we describe and demonstrate a PDE App computational methodology. The numerical approach comprises three ingredients: component => system synthesis, formulated as a static-condensation procedure; model order reduction, informed by evanescence arguments at component interfaces (port reduction) and low-dimensional parametric manifolds in component interiors (reduced basis techniques); and parallel computation, implemented in a cloud environment. We provide examples in acoustics and also linear elasticity.
Parametrized PDE (Partial Differential Equation) Apps are PDE solvers which satisfy stringent per-query performance requirements: less-than or approximate 5-second problem specification time; less-than or approximate 5-second problem solution time, field and outputs; less-than or approximate 5% solution error, specified metrics; less-than or approximate 5-second solution visualization time. Parametrized PDE apps are relevant in many-query, ...

65N30 ; 65N15 ; 65M60 ; 65M15 ; 93B50

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Algebraic multigrid and subdivision
Charina, Maria (Auteur de la Conférence) | CIRM (Editeur )

Multigrid is an iterative method for solving large linear systems of equations whose Toeplitz system matrix is positive definite. One of the crucial steps of any Multigrid method is based on multivariate subdivision. We derive sufficient conditions for convergence and optimality of Multigrid in terms of trigonometric polynomials associated with the corresponding subdivision schemes.
(This is a joint work with Marco Donatelli, Lucia Romani and Valentina Turati).
Multigrid is an iterative method for solving large linear systems of equations whose Toeplitz system matrix is positive definite. One of the crucial steps of any Multigrid method is based on multivariate subdivision. We derive sufficient conditions for convergence and optimality of Multigrid in terms of trigonometric polynomials associated with the corresponding subdivision schemes.
(This is a joint work with Marco Donatelli, Lucia Romani and ...

65N55 ; 65N30 ; 65F10 ; 65F35

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We present a lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic eld H on each edge, and the vertex values of the Lagrange multiplier p (used to enforce the solenoidality of the magnetic induction B = µH). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called ”first kind N´ed´elec” elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions. Hints on a whole family of elements will also be given.
We present a lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic eld H on each edge, and the vertex values of the Lagrange multiplier p (used to ...

65N30 ; 65N12

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Recently there has been a surge in interest in cut, or unfitted, finite element methods. In this class of methods typically the computational mesh is independent of the geometry. Interfaces and boundaries are allowed to cut through the mesh in a very general fashion. Constraints on the boundaries such as boundary or transmission conditions are typically imposed weakly using Nitsche’s method. In this talk we will discuss how these ideas can be combined in a fruitful way with the idea of hybridization, where additional degrees of freedom are added on the interfaces to further improve the decoupling of the systems, allowing for static condensation of interior unknowns. In the first part of the talk we will discuss how hybridization can be combined with the classical cut finite element method, using standard H1 -conforming finite elements in each subdomain, leading to a robust method allowing for the integration of polytopal geometries, where the subdomains are independent of the underlying mesh. This leads to a framework where it is easy to integrate multiscale features such as strongly varying coefficients, or multidimensional coupling, as in flow in fractured domains. Some examples of such applications will be given. In the second part of the talk we will focus on the Hybridized High Order Method (HHO) and show how cut techniques can be introduced in this context. The HHO is a recently introduced nonconforming method that allows for arbitrary order discretization of diffusive problems on polytopal meshes. HHO methods have hybrid unknowns, made of polynomials in the mesh elements and on the faces, without any continuity requirement. They rely on high-order local reconstructions, which are used to build consistent Galerkin contributions and appropriate stabilization terms designed to preserve the high-order approximation properties of the local reconstructions. Here we will show how cut element techniques can be introduced as a tool for the handling of (possibly curved) interfaces or boundaries that are allowed to cut through the polytopal mesh. In this context the cut element method plays the role of a local interface model, where the associated degrees of freedom are eliminated in the static condensation step. Issues of robustness and accuracy will be discussed and illustrated by some numerical examples.
Recently there has been a surge in interest in cut, or unfitted, finite element methods. In this class of methods typically the computational mesh is independent of the geometry. Interfaces and boundaries are allowed to cut through the mesh in a very general fashion. Constraints on the boundaries such as boundary or transmission conditions are typically imposed weakly using Nitsche’s method. In this talk we will discuss how these ideas can be ...

65N30 ; 34A38

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I will present an efficient implementation of the highly robust and scalable GenEO preconditioner in the high-performance PDE framework DUNE. The GenEO coarse space is constructed by combining low energy solutions of local generalised eigenproblems using a partition of unity. In this talk, both weak and strong scaling for the GenEO solver on over 15,000 cores will be demonstrated by solving an industrially motivated problem with over 200 million degrees of freedom in aerospace composites modelling. Further, it will be shown that for highly complex parameter distributions in certain real-world applications, established methods can become intractable while GenEO remains fully effective. In the context of multilevel Markov chain Monte Carlo (MLMCMC), the GenEO coarse space also plays an important role as an effective surrogate model in PDE-constrained Bayesian inference. The second part will therefore focus on the approximation properties of the GenEO coarse space and on a high-performance parallel implementation of MLMCMC.
This is joint work with Tim Dodwell (Exeter), Anne Reinarz (TU Munich) and Linus Seelinger (Heidelberg).
I will present an efficient implementation of the highly robust and scalable GenEO preconditioner in the high-performance PDE framework DUNE. The GenEO coarse space is constructed by combining low energy solutions of local generalised eigenproblems using a partition of unity. In this talk, both weak and strong scaling for the GenEO solver on over 15,000 cores will be demonstrated by solving an industrially motivated problem with over 200 million ...

65F08 ; 65N22 ; 65N30 ; 65N55

Z