Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Multigrid is an iterative method for solving large linear systems of equations whose Toeplitz system matrix is positive definite. One of the crucial steps of any Multigrid method is based on multivariate subdivision. We derive sufficient conditions for convergence and optimality of Multigrid in terms of trigonometric polynomials associated with the corresponding subdivision schemes.
(This is a joint work with Marco Donatelli, Lucia Romani and Valentina Turati).
[-]
Multigrid is an iterative method for solving large linear systems of equations whose Toeplitz system matrix is positive definite. One of the crucial steps of any Multigrid method is based on multivariate subdivision. We derive sufficient conditions for convergence and optimality of Multigrid in terms of trigonometric polynomials associated with the corresponding subdivision schemes.
(This is a joint work with Marco Donatelli, Lucia Romani and ...
[+]
65N55 ; 65N30 ; 65F10 ; 65F35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral geometry. The most well known example is Smale's 17th problem, which asks to find a solution of a given system of n complex homogeneous polynomial equations in $n$ + 1 unknowns. This problem can be solved in average (and even smoothed) polynomial time.
In the course we will explain the concepts necessary to state and solve Smale's 17th problem. We also show how these ideas lead to new numerical algorithms for computing eigenpairs of matrices that provably run in average polynomial time. Making these algorithms more efficient or adapting them to structured settings are challenging and rewarding research problems. We intend to address some of these issues at the end of the course.
[-]
The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral ...
[+]
65F35 ; 65K05 ; 68Q15 ; 15A12 ; 65F10 ; 90C51 ; 65H10
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral geometry. The most well known example is Smale's 17th problem, which asks to find a solution of a given system of n complex homogeneous polynomial equations in $n$ + 1 unknowns. This problem can be solved in average (and even smoothed) polynomial time.
In the course we will explain the concepts necessary to state and solve Smale's 17th problem. We also show how these ideas lead to new numerical algorithms for computing eigenpairs of matrices that provably run in average polynomial time. Making these algorithms more efficient or adapting them to structured settings are challenging and rewarding research problems. We intend to address some of these issues at the end of the course.
[-]
The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral ...
[+]
65F35 ; 65K05 ; 68Q15 ; 15A12 ; 65F10 ; 90C51 ; 65H10