Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss recent progress on understanding the dimension of self-similar sets and measures. The main conjecture in this field is that the only way that the dimension of such a fractal can be "non-full" is if the semigroup of contractions which define it is not free. The result I will discuss is that "non-full" dimension implies "almost non-freeness", in the sense that there are distinct words in the semigroup which are extremely close together (super-exponentially in their lengths). Applications include resolution of some conjectures of Furstenberg on the dimension of sumsets and, together with work of Shmerkin, progress on the absolute continuity of Bernoulli convolutions. The main new ingredient is a statement in additive combinatorics concerning the structure of measures whose entropy does not grow very much under convolution. If time permits I will discuss the analogous results in higher dimensions.
[-]
I will discuss recent progress on understanding the dimension of self-similar sets and measures. The main conjecture in this field is that the only way that the dimension of such a fractal can be "non-full" is if the semigroup of contractions which define it is not free. The result I will discuss is that "non-full" dimension implies "almost non-freeness", in the sense that there are distinct words in the semigroup which are extremely close ...
[+]
28A80 ; 37A10 ; 03D99 ; 54H20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A transcendental entire function with bounded singular set that is hyperbolic and has a unique Fatou component is said to be of disjoint type. The Julia set of any disjoint-type function of finite order is known to be a collection of curves that escape to infinity and form a Cantor bouquet, i.e., a subset of $\mathbb{C}$ ambiently homeomorphic to a straight brush. We show that there exists $f$ of disjoint type whose Julia set $J(f)$ is a collection of escaping curves, but $J(f)$ is not a Cantor bouquet. On the other hand, we prove that if $f$ of disjoint type and $J(f)$ contains an absorbing Cantor bouquet, that is, a Cantor bouquet to which all escaping points are eventually mapped, then $J(f)$ must be a Cantor bouquet. This is joint work with L. Rempe.
[-]
A transcendental entire function with bounded singular set that is hyperbolic and has a unique Fatou component is said to be of disjoint type. The Julia set of any disjoint-type function of finite order is known to be a collection of curves that escape to infinity and form a Cantor bouquet, i.e., a subset of $\mathbb{C}$ ambiently homeomorphic to a straight brush. We show that there exists $f$ of disjoint type whose Julia set $J(f)$ is a ...
[+]
37F10 ; 54H20 ; 30D05 ; 54F15