En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 76W05 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In this talk, I will present ColDICE[1, 2], a publicly available parallel numerical solver designed to solve the Vlasov-Poisson equations in the cold case limit. The method is based on the representation of the phase-space sheet as a conforming, self-adaptive simplicial tessellation whose vertices follow the Lagrangian equations of motion. In this presentation, I will mainly focus on describing the underlying algorithm and its practical implementation, as well as showing a few practical examples demonstrating its capabilities.[-]
In this talk, I will present ColDICE[1, 2], a publicly available parallel numerical solver designed to solve the Vlasov-Poisson equations in the cold case limit. The method is based on the representation of the phase-space sheet as a conforming, self-adaptive simplicial tessellation whose vertices follow the Lagrangian equations of motion. In this presentation, I will mainly focus on describing the underlying algorithm and its practical ...[+]

65Mxx ; 45K05 ; 65Y05 ; 76W05 ; 85A30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy identity and that existence of a weak solution can be proved. Some of these models will be detailed.
The second result is perhaps more important for applications. It provides understanding on the fact the the growth rate of linear instabilities of the initial (non reduced) model is lower bounded by the growth rate of linear instabilities of the reduced model.
This work has been done with Rémy Sart.[-]
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy ...[+]

76W05 ; 35L65 ; 65M60 ; 35Q30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

MHD simulations for ITER - Huijsmans, Guido (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

On the Hall-MHD equations - Chae, Dongho (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we present recent results on the Hall-MHD system. We consider the incompressible MHD-Hall equations in $\mathbb{R}^3$.

$\partial_tu +u \cdot u + \nabla u+\nabla p = \left ( \nabla \times B \right )\times B +\nu \nabla u,$
$\nabla \cdot u =0, \nabla \cdot B =0, $
$\partial_tB - \nabla \times \left (u \times B\right ) + \nabla \times \left (\left (\nabla \times B\right )\times B \right ) = \mu \nabla B,$
$u\left (x,0 \right )=u_0\left (x\right ) ; B\left (x,0 \right )=B_0\left (x\right ).$

Here $u=\left (u_1, u_2, u_3 \right ) = u \left (x,t \right ) $ is the velocity of the charged fluid, $B=\left (B_1, B_2, B_3 \right ) $ the magnetic field induced by the motion of the charged fluid, $p=p \left (x,t \right )$ the pressure of the fluid. The positive constants $\nu$ and $\mu$ are the viscosity and the resistivity coefficients. Compared with the usual viscous incompressible MHD system, the above system contains the extra term $\nabla \times \left (\left (\nabla \times B\right )\times B \right ) $ , which is the so called Hall term. This term is important when the magnetic shear is large, where the magnetic reconnection happens. On the other hand, in the case of laminar ows where the shear is weak, one ignores the Hall term, and the system reduces to the usual MHD. Compared to the case of the usual MHD the history of the fully rigorous mathematical study of the Cauchy problem for the Hall-MHD system is very short. The global existence of weak solutions in the periodic domain is done in [1] by a Galerkin approximation. The global existence in the whole domain in $\mathbb{R}^3$ as well as the local well-posedness of smooth solution is proved in [2], where the global existence of smooth solution for small initial data is also established. A refined form of the blow-up criteria and small data global existence is obtained in [3]. Temporal decay estimateof the global small solutions is deduced in [4]. In the case of zero resistivity we present finite time blow-up result for the solutions obtained in [5]. We note that this is quite rare case, as far as the authors know, where the blow-up result for the incompressible flows is proved.[-]
In this talk we present recent results on the Hall-MHD system. We consider the incompressible MHD-Hall equations in $\mathbb{R}^3$.

$\partial_tu +u \cdot u + \nabla u+\nabla p = \left ( \nabla \times B \right )\times B +\nu \nabla u,$
$\nabla \cdot u =0, \nabla \cdot B =0, $
$\partial_tB - \nabla \times \left (u \times B\right ) + \nabla \times \left (\left (\nabla \times B\right )\times B \right ) = \mu \nabla B,$
$u\left (x,0 \right ...[+]

35Q35 ; 76W05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture will present a short overview on kinetic MHD. The advantages and drawbacks of kinetic versus fluid modelling will be summarized. Various techniques to implement kinetic effects in the fluid description will be introduced with increasing complexity: bi-fluid effects, gyroaverage fields, Landau closures. Hybrid formulations, which combine fluid and kinetic approaches will be presented. It will be shown that these formulations raise several difficulties, including inconsistent ordering and choice of representation. The non linear dynamics of an internal kink mode in a tokamak will be used as a test bed for the various formulations. It will be shown that bi-fluid effects can explain to some extent fast plasma relaxations (reconnection), but cannot address kinetic instabilities due to energetic particles. Some results of hybrid codes will be shown. Recent developments and perspectives will be given in conclusion.[-]
This lecture will present a short overview on kinetic MHD. The advantages and drawbacks of kinetic versus fluid modelling will be summarized. Various techniques to implement kinetic effects in the fluid description will be introduced with increasing complexity: bi-fluid effects, gyroaverage fields, Landau closures. Hybrid formulations, which combine fluid and kinetic approaches will be presented. It will be shown that these formulations raise ...[+]

82D10 ; 76W05

Sélection Signaler une erreur