Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A front data assimilation system named FIREFLY has been developed at CERFACS in collaboration with the University of Maryland to better estimate the environmental conditions (biomass properties, near-surface wind). We discuss the sequential application of the ensemble Kalman filter (EnKF) in FIREFLY for correcting in a spatially-distributed way, input parameters in order to better track the fire front position. In particular, using a polynomial chaos surrogate to mimic the wildfire spread model in the EnKF algorithm was found in collaboration with LIMSI to be a promising strategy to reduce the computational cost of FIREFLY.
We also discuss the way we represent the distance between simulated and observed fronts. In the CEMRACS project, a new discrepancy operator will be introduced to better represent the match (or mismatch) between simulated fronts and mid-infrared observations in collaboration with INRIA. This front level-set data assimilation derived from image processing and designed for electrophysiology will be extended to wildfire spread monitoring.
[-]
A front data assimilation system named FIREFLY has been developed at CERFACS in collaboration with the University of Maryland to better estimate the environmental conditions (biomass properties, near-surface wind). We discuss the sequential application of the ensemble Kalman filter (EnKF) in FIREFLY for correcting in a spatially-distributed way, input parameters in order to better track the fire front position. In particular, using a polynomial ...
[+]
65K10 ; 80A25