En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 81Q20 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Certain quantum spectral problems have the remarkable property that the formal perturbative series for the energy spectrum can be used to generate all other terms in the entire trans-series, in a completely constructive manner. I explain a geometric all-orders WKB approach to these perturbative/non-perturbative relations, which reveals surprising connections to number theory and modular forms.

81T15 ; 81T16 ; 81Q20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The quantum Vlasov equation - Mauser, Norbert (Auteur de la Conférence) | CIRM H

Multi angle

We present the Quantum Vlasov or Wigner equation as a "phase space" presentation of quantum mechanics that is close to the classical Vlasov equation, but where the "distribution function" $w(x,v,t)$ will in general have also negative values.
We discuss the relation to the classical Vlasov equation in the semi-classical asymptotics of small Planck's constant, for the linear case [2] and for the nonlinear case where we couple the quantum Vlasov equation to the Poisson equation [4, 3, 5] and [1].
Recently, in some sort of "inverse semiclassical limit" the numerical concept of solving Schrödinger-Poisson as an approximation of Vlasov-Poisson attracted attention in cosmology, which opens a link to the "smoothed Schrödinger/Wigner numerics" of Athanassoulis et al. (e.g. [6]).[-]
We present the Quantum Vlasov or Wigner equation as a "phase space" presentation of quantum mechanics that is close to the classical Vlasov equation, but where the "distribution function" $w(x,v,t)$ will in general have also negative values.
We discuss the relation to the classical Vlasov equation in the semi-classical asymptotics of small Planck's constant, for the linear case [2] and for the nonlinear case where we couple the quantum Vlasov ...[+]

35Q40 ; 35J10 ; 81Q20 ; 81S30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Peierls substitution for magnetic Bloch bands - Teufel, Stefan (Auteur de la Conférence) | CIRM H

Post-edited

We consider the one-particle Schrödinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\varepsilon x)$ and $A(\varepsilon x)$ , for $\epsilon\ll 1$ . For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schrödinger operator to a corresponding almost invariant subspace. At leading order, our effective Hamiltonian can be interpreted as the Peierls substitution Hamiltonian widely used in physics for non-magnetic Bloch bands. However, while for non-magnetic Bloch bands the corresponding result is well understood, both on a heuristic and on a rigorous level, for magnetic Bloch bands it is not clear how to even define a Peierls substitution Hamiltonian beyond a formal expression. The source of the difficulty is a topological obstruction: In contrast to the non-magnetic case, magnetic Bloch bundles are generically not trivializable. As a consequence, Peierls substitution Hamiltonians for magnetic Bloch bands turn out to be pseudodifferential operators acting on sections of non-trivial vector bundles over a two-torus, the reduced Brillouin zone. As an application of our results we construct a family of canonical one-band Hamiltonians $H_{\theta=0}$ for magnetic Bloch bands with Chern number $\theta\in\mathbb{Z}$ that generalizes the Hofstadter model $H_{\theta=0}$ for a single non-magnetic Bloch band. It turns out that the spectrum of $H_\theta$ is independent of $\theta$ and thus agrees with the Hofstadter spectrum depicted in his famous (black and white) butterfly. However, the resulting Chern numbers of subbands, corresponding to Hall conductivities, depend on $\theta$ , and thus the models lead to different colored butterflies.
This is joint work with Silvia Freund.[-]
We consider the one-particle Schrödinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\varepsilon x)$ and $A(\varepsilon x)$ , for $\epsilon\ll 1$ . For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schrödinger operator to a co...[+]

81Q20 ; 81V10 ; 82D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quantum footprints of symplectic rigidity - Polterovich, Leonid (Auteur de la Conférence) | CIRM H

Multi angle

We discuss interactions between quantum mechanics and symplectic topology including a link between symplectic displacement energy, a fundamental notion of symplectic dynamics, and the quantum speed limit, a universal constraint on the speed of quantum-mechanical processes.
Joint work with Laurent Charles.

81S10 ; 53D50 ; 81Q20 ; 81R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the Dirac bag model in strong magnetic fields - Raymond, Nicolas (Auteur de la Conférence) | CIRM H

Multi angle

This talk is devoted to two-dimensional Dirac operators on bounded domains coupled to a magnetic field perpendicular to the plane. It will be focused on the MIT bag boundary condition. I will describe recent results about accurate asymptotic estimates for the low-lying (positive and négative) eigenvalues in the limit of a strong magnetic field.
This is a joint work with J.-M. Barbaroux, L. Le Treust and E. Stockmeyer.

35P15 ; 32A70 ; 81Q20

Sélection Signaler une erreur