m

F Nous contacter


0

Documents  81Q50 | enregistrements trouvés : 7

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We consider the one-parameter families of transfer operators for geodesic flows on negatively curved manifolds. We show that the spectra of the generators have some "band structure" parallel to the imaginary axis. As a special case of "semi-classical" transfer operator, we see that the eigenvalues concentrate around the imaginary axis with some gap on the both sides.

37C30 ; 37D40 ; 53D25 ; 81Q50

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In the 80’s, D. Ruelle, D. Bowen and others have introduced probabilistic and spectral methods in order to study deterministic chaos (”Ruelle resonances”). For a geodesic flow on a strictly negative curvature Riemannian manifold, following this approach and use of microlocal analysis, one obtains that long time fluctuations of classical probabilities are described by an effective quantum wave equation. This may be surprising because there is no added quantization procedure. We will discuss consequences for the zeros of dynamical zeta functions. This shows that the problematic of classical chaos and quantum chaos are closely related. Joint work with Masato Tsujii.
In the 80’s, D. Ruelle, D. Bowen and others have introduced probabilistic and spectral methods in order to study deterministic chaos (”Ruelle resonances”). For a geodesic flow on a strictly negative curvature Riemannian manifold, following this approach and use of microlocal analysis, one obtains that long time fluctuations of classical probabilities are described by an effective quantum wave equation. This may be surprising because there is no ...

37D20 ; 37D35 ; 81Q50 ; 81S10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties of completely integrable and chaotic systems.
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties ...

81Q50 ; 37N20 ; 35P20 ; 58J51 ; 58J50 ; 37D40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties of completely integrable and chaotic systems.
Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties ...

81Q50 ; 37N20 ; 35P20 ; 58J51 ; 58J50 ; 37D40

Z