En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 81T13 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We construct Skyrme fields from holonomy of the spin connection of multi-Taub-NUT instantons with the centres positioned along a line in R3. The domain of our Skyrme fields is the space of orbits of the axial symmetry of the multi-Taub-NUT instantons. We obtain an expression for the induced Einstein-Weyl metric on the space and its associated solution to the $SU(\infty )$-Toda equation.

35Q75 ; 81V17 ; 81T13 ; 81Q80 ; 35C08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Wilson loops are the basic observables of Yang—Mills theory, and their expectation is rigorously defined on the Euclidean plane and on a compact Riemannian surface. Focusing on the case where the structure group is the unitary group, I will present a formula that computes any Wilson loop expectation in almost purely combinatorial terms, thanks to the dictionary between unitary and symmetric quantities provided by the Schur-Weyl duality.

81T13 ; 05E10 ; 60G65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The coherent Satake category - Williams, Harold (Auteur de la Conférence) | CIRM H

Multi angle

The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and its monoidal product is not symmetric. We show however that it is rigid and admits renormalized r-matrices similar to those appearing in the theory of quantum loop or KLR algebras. Applying the framework developed by Kang-Kashiwara-Kim-Oh in their proof of the dual canonical basis conjecture, we use these results to show that the coherent Satake category of $GL_n$ is a monoidal cluster categorification in the sense of Hernandez-Leclerc. This clarifies the physical meaning of the coherent Satake category: simple perverse coherent sheaves correspond to Wilson-'t Hooft operators in $\mathcal{N} = 2$ gauge theory, just as simple perverse sheaves correspond to 't Hooft operators in $\mathcal{N} = 4$ gauge theory following the work of Kapustin-Witten. Our results also explain the appearance of identical quivers in the work of Kedem-Di Francesco on $Q$-systems and in the context of BPS quivers. More generally, our construction of renormalized r-matrices works in any chiral $E_1$-category, providing a new way of understanding the ubiquity of cluster algebras in $\mathcal{N} = 2$ field theory: the existence of renormalized r-matrices, hence of iterated cluster mutation, is a formal feature of such theories after passing to their holomorphic-topological twists. This is joint work with Sabin Cautis (arXiv:1801.08111).[-]
The geometric Satake equivalence identifies the Satake category of a reductive group $G$ – that is, the category of equivariant perverse sheaves on the affine Grassmannian $G_{rG}$ – with the representation category of its Langlands dual group $G^∨$. While the Satake category is topological in nature, it has a poorly understood algebro-geometric cousin: the category of perverse coherent sheaves on $G_{rG}$. This category is not semi-simple and ...[+]

14D24 ; 14F05 ; 14M15 ; 18D10 ; 13F60 ; 17B37 ; 81T13

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An introduction to the BV-BFV formalism - Cattaneo, Alberto S. (Auteur de la Conférence) | CIRM H

Multi angle

The BV-BFV formalism unifies the BV formalism (which deals with the problem of fixing the gauge of field theories on closed manifolds) with the BFV formalism (which yields a cohomological resolution of the reduced phase space of a classical field theory). I will explain how this formalism arises and how it can be quantized.

83C45 ; 81T13 ; 70S05 ; 81T70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will review a conjecture (joint work with Davide Gaiotto and Greg Moore) which gives a description of the hyperkähler metric on the moduli space of Higgs bundles, and recent joint work with David Dumas which has given evidence that the conjecture is true in the case of $SL(2)$-Higgs bundles.

32Q20 ; 53C07 ; 53C55 ; 53C26 ; 81T13 ; 81T60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We generalize the mathematical definition of Coulomb branches of 3-dimensional N = 4 SUSY quiver gauge theories to the cases of symmetrizable ones. We obtain generalized slices in affine Grassmannian of type BCFG as examples of the construction.
This is a joint work with Alex Weekes.

81T13 ; 81T60 ; 16G20

Sélection Signaler une erreur