Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will review the recent developments on weighted distances in scale free random graphs as well as highlight key techniques used in the proofs. We consider graph models where the degree distribution follows a power-law such that the empirical variance of the degrees is infinite, such as the configuration model, geometric inhomogeneous random graphs, or scale free percolation. Once the graph is created according to the model definition, we assign i.i.d. positive edge weights to existing edges, and we are interested in the proper scaling and asymptotic distribution of weighted distances.
In the infinite variance degree regime, a dichotomy can be observed in all these graph models: the edge weight distributions form two classes, explosive vs conservative weight distributions. When a distribution falls into the explosive class, typical distances converge in distribution to proper random variables. While, when a distribution falls into the conservative class, distances tend to infinity with the model size, according to a formula that captures the doubly-logarithmic graph distances as well as the precise behaviour of the distribution of edge-weights around the origin. An integrability condition decides into which class a given distribution falls.
This is joint work with Adriaans, Baroni, van der Hofstad, and Lodewijks.
[-]
In this talk I will review the recent developments on weighted distances in scale free random graphs as well as highlight key techniques used in the proofs. We consider graph models where the degree distribution follows a power-law such that the empirical variance of the degrees is infinite, such as the configuration model, geometric inhomogeneous random graphs, or scale free percolation. Once the graph is created according to the model ...
[+]
05C80 ; 90B15 ; 60C05 ; 60D05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In the scenario where multiple instances of networks with same nodes are available and nodes are attached to spatial features, it is worth combining both information in order to explain the role of the nodes. The explainability of node role in complex networks is very difficult, however crucial in different application scenarios such as social science, neuroscience, computer science... Many efforts have been made on the quantification of hubs revealing particular nodes in a network using a given structural property. Yet, for spatio-temporal networks, the identification of node role remains largely unexplored. In this talk, I will show limitations of classical methods on a real datasets coming from brain connectivity comparing healthy subjects to coma patients. Then, I will present recent work using equivalence relation of the nodal structural properties. Comparisons of graphs with same nodes set is evaluated with a new similarity score based on graph structural patterns. This score provides a nodal index to determine node role distinctiveness in a graph family. Finally, illustrations on different datasets concerning human brain functional connectivity will be described.
[-]
In the scenario where multiple instances of networks with same nodes are available and nodes are attached to spatial features, it is worth combining both information in order to explain the role of the nodes. The explainability of node role in complex networks is very difficult, however crucial in different application scenarios such as social science, neuroscience, computer science... Many efforts have been made on the quantification of hubs ...
[+]
05C75 ; 92B20 ; 90B15 ; 62P10