m

F Nous contacter


0

Documents  92C55 | enregistrements trouvés : 5

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

​We consider photoacoustic tomography in the presence of approximation and modelling errors. The inverse problem, i.e. estimation of the initial pressure from photoacoustic time-series measured on the boundary of the target, is approached in the framework of Bayesian inverse problems. The posterior distribution is examined in situations in which the forward model contains errors or uncertainties for example due to numerical approximations or uncertainties in the acoustic parameters. Modelling of these errors and its impact on the posterior distribution are investigated.
This is joint work with Teemu Sahlstrm, Jenni Tick and Aki Pulkkinen.
​We consider photoacoustic tomography in the presence of approximation and modelling errors. The inverse problem, i.e. estimation of the initial pressure from photoacoustic time-series measured on the boundary of the target, is approached in the framework of Bayesian inverse problems. The posterior distribution is examined in situations in which the forward model contains errors or uncertainties for example due to numerical approximations or ...

35R30 ; 35Q60 ; 65R32 ; 65C20 ; 92C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Classical invariant theory has essentially addressed the action of the general linear group on homogeneous polynomials. Yet the orthogonal group arises in applications as the relevant group of transformations, especially in 3 dimensional space. Having a complete set of invariants for its action on ternary quartics, i.e. degree 4 homogeneous polynomials in 3 variables, is, for instance, relevant in determining biomarkers for white matter from diffusion MRI.
We characterize a generating set of rational invariants of the orthogonal group acting on even degree forms by their restriction on a slice. These restrictions are invariant under the octahedral group and their explicit formulae are given compactly in terms of equivariant maps. The invariants of the orthogonal group can then be obtained in an explicit way, but their numerical evaluation can be achieved more robustly using their restrictions. The exhibited set of generators futhermore allows us to solve the inverse problem and the rewriting.
Central in obtaining the invariants for higher degree forms is the preliminary construction, with explicit formulae, for a basis of harmonic polynomials with octahedral symmetry, dif- ferent, though related, to cubic harmonics.
This is joint work with Paul Görlach (now at MPI Leipzig), in a joint project with Téo Papadopoulo (Inria Méditerranée).
Classical invariant theory has essentially addressed the action of the general linear group on homogeneous polynomials. Yet the orthogonal group arises in applications as the relevant group of transformations, especially in 3 dimensional space. Having a complete set of invariants for its action on ternary quartics, i.e. degree 4 homogeneous polynomials in 3 variables, is, for instance, relevant in determining biomarkers for white matter from ...

05E05 ; 13A50 ; 13P10 ; 68W30 ; 92C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

​Multiwave aspects of thermoacoustic imaging and range verification during particle therapy will be discussed.
Thermoacoustic images are generated from acoustic pulses induced by heating due to lossy electromagnetic wave propagation. Quantitative thermoacoustic imaging is feasible when the electric field pattern can be accurately modeled throughout the imaging field of view and delivered quickly enough to ensure stress confinement.
Therapeutic ions slow from relativistic speeds to a dead stop within nanoseconds, generating extraordinarily high temperature and pressure spikes within a thermal core of nanometer diameter along their tracks.
Possibilities for utilizing these phenomena to verify the ion beam location within the patient will be considered.
​Multiwave aspects of thermoacoustic imaging and range verification during particle therapy will be discussed.
Thermoacoustic images are generated from acoustic pulses induced by heating due to lossy electromagnetic wave propagation. Quantitative thermoacoustic imaging is feasible when the electric field pattern can be accurately modeled throughout the imaging field of view and delivered quickly enough to ensure stress confinement.
Therapeutic ...

35L05 ; 35R30 ; 92C55 ; 92C50

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. First we use the 1D Wavelet Transform Modulus Maxima (WTMM) method to reveal changes in skin temperature dynamics of women breasts with and without malignant tumor. We show that the statistics of temperature temporal fluctuations about the cardiogenic and vasomotor perfusion oscillations do not change across time-scales for cancerous breasts as the signature of homogeneous monofractal fluctuations. This contrasts with the continuous change of temperature fluctuation statistics observed for healthy breasts as the hallmark of complex multifractal scaling. When using the 2D WTMM method to analyze the roughness fluctuations of X-ray mammograms, we reveal some drastic loss of roughness spatial correlations that likely results from some deep architectural change in the microenvironment of a breast tumor. This local breast disorganisation may deeply affect heat transfer and related thermomechanics in the breast tissue and in turn explain the loss of multifractal complexity of temperature temporal fluctuations previously observed in mammary glands with malignant tumor. These promising findings could lead to the future use of combined wavelet-based multifractal processing of dynamic IR thermograms and X-ray mammograms to help identifying women with high risk of breast cancer prior to more traumatic examinations. Besides potential clinical impact, these results shed a new light on physiological changes that may precede anatomical alterations in breast cancer development.

Keywords: breast cancer - X-ray mammography - infrared thermography - multifractal analysis - wavelet transform - wavelet transform modulus maxima method
Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. First we use the 1D Wavelet Transform Modulus Maxima (WTMM) method to reveal changes in skin ...

92-08 ; 92C50 ; 92C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The heart undergoes some highly complex multi-scale multi-physics phenomena that must be accounted for in order to adequately model the biomechanical behavior of the complete organ. In this respect, a major focus of our work has been on formulating modeling ingredients that satisfy the most crucial thermomechanical requirements - in particular as regards energy balances - throughout the various forms of physical and scale-related couplings. This has led to a "beating heart" model for which some experimental and clinical validations have already been obtained. Concurrently, with the objective of building "patient-specific" heart models, we have investigated some original approaches inspired from data assimilation concepts to benefit from the available clinical data, with a particular concern for medical imaging. By combining the two fundamental sources of information represented by the model and the data, we are able to extract some most valuable quantitative knowledge on a given heart, e.g. as regards some uncertain constitutive parameter values characterizing a possible pathology, with important perspectives in diagnosis assistance. In addition, once the overall uncertainty has been adequately controlled via this adjustment process, the model can be expected to become "predictive", hence should provide clinically-relevant quantitative information, both in the current state of the patient and under various scenarii of future evolutions, such as for therapy planning.
The heart undergoes some highly complex multi-scale multi-physics phenomena that must be accounted for in order to adequately model the biomechanical behavior of the complete organ. In this respect, a major focus of our work has been on formulating modeling ingredients that satisfy the most crucial thermomechanical requirements - in particular as regards energy balances - throughout the various forms of physical and scale-related couplings. This ...

92C10 ; 92C55 ; 74H15

Z