Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space.
Classical control methods allow to build coordinated strategies so that the drivers successfully drive the evaders to the desired final destination.
But the computational cost quickly becomes unfeasible when the number of interacting agents is large.
We present a method that combines the Random Batch Method (RBM) and Model Predictive Control (MPC) to significantly reduce the computational cost without compromising the efficiency of the control strategy.
This talk is based on joint work with Dongnam Ko, from the Catholic University of Korea.
[-]
We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space.
Classical control methods allow to build coordinated strategies so that the drivers successfully drive the evaders to the desired final destination.
But the computational ...
[+]
93D20 ; 93B52 ; 49N75
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The multiplier approach is applied to a class of port-Hamiltonian systems with boundary dissipation to establish exponential decay. The exponential stability of port-Hamiltonian systems has been studied and sufficient conditions obtained. Here the decay rate $Me^{-\alpha t}$ is established with $M$ and $\alpha$ are in terms of system parameters. This approach is illustrated by several examples, in particular, boundary stabilization of a piezoelectric beam with magnetic effects.
[-]
The multiplier approach is applied to a class of port-Hamiltonian systems with boundary dissipation to establish exponential decay. The exponential stability of port-Hamiltonian systems has been studied and sufficient conditions obtained. Here the decay rate $Me^{-\alpha t}$ is established with $M$ and $\alpha$ are in terms of system parameters. This approach is illustrated by several examples, in particular, boundary stabilization of a ...
[+]
35B35 ; 35Q93 ; 93B52 ; 93C20 ; 93D23
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We start by presenting some results on the stabilization, rapid or in finite time, of control systems modeled by means of ordinary differential equations. We study the interest and the limitation of the damping method for the stabilization of control systems. We then describe methods to transform a given linear control system into new ones for which the rapid stabilization is easy to get. As an application of these methods we show how to get rapid stabilization for Korteweg-de Vries equations and how to stabilize in finite time $1-D$ parabolic linear equations by means of periodic time-varying feedback laws.
[-]
We start by presenting some results on the stabilization, rapid or in finite time, of control systems modeled by means of ordinary differential equations. We study the interest and the limitation of the damping method for the stabilization of control systems. We then describe methods to transform a given linear control system into new ones for which the rapid stabilization is easy to get. As an application of these methods we show how to get ...
[+]
35B35 ; 35Q53 ; 93C10 ; 93C20 ; 35K05 ; 93B05 ; 93B17 ; 93B52