Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Dark matter (DM) constitutes almost 85% of all mass able to cluster into gravitationally bound objects. Thus it has played the determining role in the origin and evolution of the structure in the universe often referred to as the Cosmic Web. The dark matter component of the Cosmic Web or simply the Dark Matter Web is considerably easier to understand theoretically than the baryonic component of the web if one assumes that DM interacts only gravitationally. One of the major differences between the DM and baryonic webs consists in the multi stream structure of the DM web. Thus it allows to use three diagnostic fields that do not present in the baryonic web: the number of streams field in Eulerian space, the number of flip flops field in Lagrangian space, and the caustic structure in the both. Although these characteristics have been known for a long time their systematic studies as fields started only a few years ago. I will report new recent results of numerical studies of the three fields mentioned above and also discuss the features of the DM web they have unveil.
[-]
Dark matter (DM) constitutes almost 85% of all mass able to cluster into gravitationally bound objects. Thus it has played the determining role in the origin and evolution of the structure in the universe often referred to as the Cosmic Web. The dark matter component of the Cosmic Web or simply the Dark Matter Web is considerably easier to understand theoretically than the baryonic component of the web if one assumes that DM interacts only ...
[+]
85A15 ; 85A25 ; 85A40 ; 83F05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
(Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy in the half-space according to the Stefan-Boltzmann law. In the asymptotic regime where $\sigma \to +\infty$ and $1 − \alpha ∼ C/\sigma$, we prove that the radiation pressure exerted on the boundary of the half-space is governed by a fractional diffusion equation. This result provides an example of fractional diffusion asymptotic limit of
a kinetic model which is based on the harmonic extension definition of $\sqrt{−\Delta}$. This fractional diffusion limit therefore differs from most of other such limits for kinetic models reported in the literature, which are based on specific properties of the equilibrium distributions (“heavy tails”) or of the scattering coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977), 273–280].
[-]
(Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy ...
[+]
45K05 ; 45M05 ; 35R11 ; 82C70 ; 85A25 ; 35Q20