En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37E10 8 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Space of actions of groups on the real line - Deroin, Bertrand (Auteur de la Conférence) | CIRM H

Multi angle

In these lectures, we will report on some properties of the space of actions of a left-orderable group on the real line. We will notably describe the almost-periodic actions, the harmonic actions and their spaces.

20F60 ; 22F50 ; 37B05 ; 37E10 ; 57R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Any (at most countable) family of pairwise transverse (even singular, with saddle or prong singularities) foliations on the plane R² admits a compactification (as the disc D²) by a circle at infinity so that every ray in a leaf tends to a point on the circle, and this compactification is unique up to two natural requirements. Thus every leaf corresponds to a pair of points on the circle. With Th. Barthelmé and K. Mann, we consider the reverse problem and we give a complete answer to the two following questions:

Q1: (realization) Under which hypotheses two sets L⁺, L⁻ of pairs of points on the circle are precisely the pairs of endpoints of leaves of two transverse foliations (we give the answer for singular, and also for nonsingular foliations, and we prove that the foliations are uniquely determined).

More important is the second question:
Q2: (completion) Under which hypotheses two sets l⁺,l⁻ or pair of points on the circle correspond the pairs of endpoints of a dense subset of leaves of two transverse foliations (singular or nonsingular, and uniqueness). The uniqueness implies that any group action on the circle preserving l⁺,l⁻ extends in an action on the disc preserving the corresponding foliations. This allows us to prove that if an action G -> Homeo_+(S¹) of a group on the circle is induced by an Anosov-like action G -> Homeo_+(D²), then this action is unique and completely determined by the action on the circle. With Th. Marty, we consider the case of 1 (singular or not) foliation and we give a complete answer to the following questions

Q3: (realization) Under which hypotheses a set L of pairs of points on the circle is precisely the set of pairs of endpoints of leaves of a foliation,

Q4: (completion) Under which hypotheses a set l of pairs of points on the circle corresponds to the pairs of endpoints of a dense subset of leaves of a foliation and we prove again the uniqueness.[-]
Any (at most countable) family of pairwise transverse (even singular, with saddle or prong singularities) foliations on the plane R² admits a compactification (as the disc D²) by a circle at infinity so that every ray in a leaf tends to a point on the circle, and this compactification is unique up to two natural requirements. Thus every leaf corresponds to a pair of points on the circle. With Th. Barthelmé and K. Mann, we consider the reverse ...[+]

37E10 ; 37C86

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ smoothing via (semi-)conjugacies of small group actions and obstructions in class $C^2$ and higher. We will also explore some of the ideas involved in the proof of the connectedness of the space of $\mathbb{Z}^d$ actions by diffeomorphisms of $C^{1+ac}$ regularity (obtained in collaboration with H. Eynard-Bontemps).[-]
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ ...[+]

37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ smoothing via (semi-)conjugacies of small group actions and obstructions in class $C^2$ and higher. We will also explore some of the ideas involved in the proof of the connectedness of the space of $\mathbb{Z}^d$ actions by diffeomorphisms of $C^{1+ac}$ regularity (obtained in collaboration with H. Eynard-Bontemps).[-]
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ ...[+]

37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ smoothing via (semi-)conjugacies of small group actions and obstructions in class $C^2$ and higher. We will also explore some of the ideas involved in the proof of the connectedness of the space of $\mathbb{Z}^d$ actions by diffeomorphisms of $C^{1+ac}$ regularity (obtained in collaboration with H. Eynard-Bontemps).[-]
Studying the (closure of the) (semi-)conjugacy class of a given group action on a 1-manifold is interesting from many points of view. Depending on the manifold and/or the differentiability involved, one is faced with problems concerning small denominators, growth of groups / orbits, distortion elements, bounded cohomology, group orderability, etc. In this minicourse we will explore several general results on this topic such as the $C^1$ ...[+]

37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we study real analytic bi-cubic circle maps with bounded type rotation number. We define a suitable functional space where the renormalization operator is analytic, and we construct a hyperbolic attractor of renormalization with codimension-two stable foliation. This is joint work with Michael Yampolsky.

37E10 ; 37F25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The study of the path-connectedness of the space of $C^{r}$ actions of $\mathbb{Z}^{2}$ on the interval [0,1] plays an important role in the classification of codimension 1 foliations on 3 manifolds. One way to deform actions is by conjugation. If an action can be brought arbitrarily close to the trivial one by conjugation, it is said to be quasi-reducible. In this talk, we will present and compare obstructions to quasi-reducibility in different regularity classes, and draw conclusions concerning the initial connectedness problem.[-]
The study of the path-connectedness of the space of $C^{r}$ actions of $\mathbb{Z}^{2}$ on the interval [0,1] plays an important role in the classification of codimension 1 foliations on 3 manifolds. One way to deform actions is by conjugation. If an action can be brought arbitrarily close to the trivial one by conjugation, it is said to be quasi-reducible. In this talk, we will present and compare obstructions to quasi-reducibility in different ...[+]

37C05 ; 37C10 ; 37C15 ; 37E05 ; 37E10 ; 57S25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Irreducible lattices in semi-simple Lie groups of higher rank are not left-orderable I'll report on the problem of the left orderability of lattices in semi-simple Lie groups, and give some insight of our joint proof with Bertrand Deroin that in rank at least two, an irreducible lattice is not left-orderable. The proof will make use of the tools developed in the minicourse of Bertrand.

20F60 ; 37B05 ; 22F50 ; 37E10 ; 57R30

Sélection Signaler une erreur