En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 55Q51 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In joint work with Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver and Eva Höning, we calculate the $\bmod \left(p, v_1, v_2\right)$ homotopy $V(2)_* T C(B P\langle 2\rangle)$ of the topological cyclic homology of the truncated Brown-Peterson spectrum $B P\langle 2\rangle$, at all primes $p \geq 7$, and show that it is a finitely generated and free $\mathbb{F}_p\left[v_3\right]$-module on $12 p+4$ generators in explicit degrees within the range $-1 \leq * \leq 2 p^3+2 p^2+2 p-3$. Our computation is the first that exhibits chromatic redshift from pure $v_2$-periodicity to pure $v_3$-periodicity in a precise quantitative manner.[-]
In joint work with Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver and Eva Höning, we calculate the $\bmod \left(p, v_1, v_2\right)$ homotopy $V(2)_* T C(B P\langle 2\rangle)$ of the topological cyclic homology of the truncated Brown-Peterson spectrum $B P\langle 2\rangle$, at all primes $p \geq 7$, and show that it is a finitely generated and free $\mathbb{F}_p\left[v_3\right]$-module on $12 p+4$ generators in explicit degrees ...[+]

19D50 ; 19D55 ; 55P43 ; 55Q51

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Representation spheres and chromatic Picard groups - Stojanoska, Vesna (Auteur de la Conférence) | CIRM H

Multi angle

I will discuss ways in which representation spheres of specific finite (or profinite) groups can describe elements in chromatically interesting Picard groups, including the quintessential Picard group of the K(n)-local category. This is based on work joint with Beaudry, Bobkova, Goerss, Henn, Hill, and Pham.

55Q50 ; 55Q51

Sélection Signaler une erreur