En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 68Q12 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Informatique et physique : quelques interactions - Dowek, Gilles (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

How to compute using quantum walks - Kendon, Vivien (Auteur de la Conférence) | CIRM H

Post-edited

Quantum walks are widely and successfully used to model diverse physical processes. This leads to computation of the models, to explore their properties. Quantum walks have also been shown to be universal for quantum computing. This is a more subtle result than is often appreciated, since it applies to computations run on qubit-based quantum computers in the single walker case, and physical quantum walkers in the multi-walker case (quantum cellular automata). Nonetheless, quantum walks are powerful tools for quantum computing when correctly applied. I will explain the relationship between quantum walks as models and quantum walks as computational tools, and give some examples of their application in both contexts.[-]
Quantum walks are widely and successfully used to model diverse physical processes. This leads to computation of the models, to explore their properties. Quantum walks have also been shown to be universal for quantum computing. This is a more subtle result than is often appreciated, since it applies to computations run on qubit-based quantum computers in the single walker case, and physical quantum walkers in the multi-walker case (quantum ...[+]

68Q12 ; 68W40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Feynman Checkers: Number theory methods in quantum theory - Ustinov, Alexey (Auteur de la Conférence) ; Skopenkov, Mikhail (Auteur de la Conférence) | CIRM H

Virtualconference

In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the model reproduces the usual quantum-mechanical free-particle kernel for large time, small average velocity, and small lattice step. We compute the small-lattice-step and the large-time limits, justifying heuristic derivations by J. Narlikar from 1972 and by A.Ambainis et al. from 2001. The main tools are the Fourier transform and the stationary phase method.
A more detailed description of the model can be found in Skopenkov M.& Ustinov A. Feynman checkers: towards algorithmic quantum theory. (2020) https://arxiv.org/abs/2007.12879[-]
In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the ...[+]

82B20 ; 11L03 ; 68Q12 ; 81P68 ; 81T25 ; 81T40 ; 05A17 ; 11P82 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur