En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 81Q35 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that the spectrum of fundamental particles of matter and their symmetries can be encoded in a finite quantum geometry equipped with a supplementary structure connected with the quark-lepton symmetry. The occurrence of the exceptional quantum geometry for the description of the standard model with 3 generations is suggested. We discuss the field theoretical aspect of this approach taking into account the theory of connections on the corresponding Jordan modules.[-]
We show that the spectrum of fundamental particles of matter and their symmetries can be encoded in a finite quantum geometry equipped with a supplementary structure connected with the quark-lepton symmetry. The occurrence of the exceptional quantum geometry for the description of the standard model with 3 generations is suggested. We discuss the field theoretical aspect of this approach taking into account the theory of connections on the ...[+]

81R10 ; 17C90 ; 20G41 ; 81Q35 ; 17C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The term Tensor Network States (TNS) has become a common one in the context of numerical studies of quantum many-body problems. It refers to a number of families that represent different ansatzes for the efficient description of the state of a quantum many-body system. The first of these families, Matrix Product States (MPS), lies at the basis of Density Matrix Renormalization Group methods, which have become the most precise tool for the study of one dimensional quantum many-body systems. Their natural generalization to two or higher dimensions, the Projected Entanglement Pair States (PEPS) are good candidates to describe the physics of higher dimensional lattices. They can be used to study equilibrium properties, as ground and thermal states, but also dynamics.
Quantum information gives us some tools to understand why these families are expected to be good ansatzes for the physically relevant states, and some of the limitations connected to the simulation algorithms.
Originally introduced in the context of condensed matter physics, these methods have become a state-of-the-art technique for strongly correlated one-dimensional systems. Their applicability extends nevertheless to other fields.
These lectures will present the fundamental concepts behind TNS methods, the main families and the basic algorithms available.[-]
The term Tensor Network States (TNS) has become a common one in the context of numerical studies of quantum many-body problems. It refers to a number of families that represent different ansatzes for the efficient description of the state of a quantum many-body system. The first of these families, Matrix Product States (MPS), lies at the basis of Density Matrix Renormalization Group methods, which have become the most precise tool for the study ...[+]

81T17 ; 81Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The term Tensor Network States (TNS) has become a common one in the context of numerical studies of quantum many-body problems. It refers to a number of families that represent different ansatzes for the efficient description of the state of a quantum many-body system. The first of these families, Matrix Product States (MPS), lies at the basis of Density Matrix Renormalization Group methods, which have become the most precise tool for the study of one dimensional quantum many-body systems. Their natural generalization to two or higher dimensions, the Projected Entanglement Pair States (PEPS) are good candidates to describe the physics of higher dimensional lattices. They can be used to study equilibrium properties, as ground and thermal states, but also dynamics.
Quantum information gives us some tools to understand why these families are expected to be good ansatzes for the physically relevant states, and some of the limitations connected to the simulation algorithms.
Originally introduced in the context of condensed matter physics, these methods have become a state-of-the-art technique for strongly correlated one-dimensional systems. Their applicability extends nevertheless to other fields.
These lectures will present the fundamental concepts behind TNS methods, the main families and the basic algorithms available.[-]
The term Tensor Network States (TNS) has become a common one in the context of numerical studies of quantum many-body problems. It refers to a number of families that represent different ansatzes for the efficient description of the state of a quantum many-body system. The first of these families, Matrix Product States (MPS), lies at the basis of Density Matrix Renormalization Group methods, which have become the most precise tool for the study ...[+]

81T17 ; 81Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A perspective on the The Fibonacci trace map - Damanik, David (Auteur de la Conférence) | CIRM H

Multi angle

In this talk we explain how the Fibonacci trace map arises from the Fibonacci substitution and leads to a unified framework in which a variety of models can be studied. We discuss the associated foliations, hyperbolic sets, stable and unstable manifolds, and how the intersections of the stable manifolds with the model-dependent curve of initial conditions allow one to translate dynamical into spectral results.

81Q10 ; 81Q35 ; 37D20 ; 37D50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Problems with continuous quantum walks - Godsil, Chris (Auteur de la Conférence) | CIRM H

Multi angle

Continuous quantum walks are of great interest in quantum computing and, over the last decade, my group has been studying this topic intensively. As graph theorists, one of our main goals has been to get a better understanding of the relation between the properties of a walk and the properties of the underlying graph. We have had both successes and failures. The failures lead to a number of interesting open questions, which I will present in my talk.[-]
Continuous quantum walks are of great interest in quantum computing and, over the last decade, my group has been studying this topic intensively. As graph theorists, one of our main goals has been to get a better understanding of the relation between the properties of a walk and the properties of the underlying graph. We have had both successes and failures. The failures lead to a number of interesting open questions, which I will present in my ...[+]

05C50 ; 81Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Spatial search using lackadaisical quantum walks - Wong, Thomas G. (Auteur de la Conférence) | CIRM H

Multi angle

The coined quantum walk is a discretization of the Dirac equation of relativistic quantum mechanics, and it is a useful model for developing quantum algorithms. For example, many quantum spatial search algorithms are based on coined quantum walks. In this talk, we explore a lazy version of the coined quantum walk, called a lackadaisical quantum walk, which uses a weighted self-loop at each vertex so that the walker has some amplitude of staying put. We show that lackadaisical quantum walks can solve the spatial search problem more quickly than a regular, coined quantum walk for avariety of graphs, suggesting that it is a useful tool for improving quantum algorithms.[-]
The coined quantum walk is a discretization of the Dirac equation of relativistic quantum mechanics, and it is a useful model for developing quantum algorithms. For example, many quantum spatial search algorithms are based on coined quantum walks. In this talk, we explore a lazy version of the coined quantum walk, called a lackadaisical quantum walk, which uses a weighted self-loop at each vertex so that the walker has some amplitude of staying ...[+]

81Q35

Sélection Signaler une erreur