En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 32Q15 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algebraicity of the metric tangent cones - Wang, Xiaowei (Auteur de la Conférence) | CIRM H

Post-edited

We proved that any K-semistable log Fano cone admits a special degeneration to a uniquely determined K-polystable log Fano cone. This confirms a conjecture of Donaldson-Sun stating that the metric tangent cone of any close point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. This is a joint work with Chi Li and Chenyang Xu.

14J45 ; 32Q15 ; 32Q20 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Moduli of algebraic varieties - Dervan, Ruadhai (Auteur de la Conférence) | CIRM H

Multi angle

One of the central problems in algebraic geometry is to form a reasonable (e.g. Hausdorff) moduli space of smooth polarised varieties. I will show how one can solve this problem using canonical Kähler metrics. This is joint work with Philipp Naumann.

14D20 ; 32Q15 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We develop apriori estimates for scalar curvature type equations on compact Kähler manifolds. As an application, we show that K-energy being proper with respect to $L^1$ geodesic distance implies the existence of constant scalar curvature Kähler metrics. This is joint work with Xiuxiong Chen.

53C55 ; 32Q20 ; 32Q15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present some results about the momentum polytopes of the multiplicity-free Hamiltonian compact manifolds acted on by a compact group which are Kählerizable. I shall give a characterization of these polytopes, explain how much they determine these manifolds and sketch some applications of this characterization – most of these results have been obtained jointly with G. Pezzini and B. Van Steirteghem.

14M27 ; 53D20 ; 32Q15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Extension of quasiplurisubharmonic functions - Coman, Dan (Auteur de la Conférence) | CIRM H

Multi angle

Let $(V,\omega)$ be a compact Kähler manifold and $X$ be an analytic subvariety of $V$. We address the problem of extending $\omega$-plurisubharmonic functions on $X$ to $\omega$-plurisubharmonic functions on $V$. Our results are joint with Vincent Guedj and Ahmed Zeriahi.

32U05 ; 31C10 ; 32C25 ; 32Q15 ; 32Q28

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Since the proof of the Calabi conjecture given by Yau, complex Monge-Ampère equations on compact Kähler manifolds have been intensively studied.
In this talk we consider complex Monge-Ampère equations with prescribed singularities. More precisely, we fix a potential and we show existence and uniqueness of solutions of complex Monge-Ampère equations which have the same singularity type of the model potential we chose. This result can be interpreted as a generalisation of Yau's theorem (in this case the model potential is smooth).
As a corollary we obtain the existence of singular Kähler-Einstein metrics with prescribed singularities on general type and Calabi-Yau manifolds.
This is a joint work with Tamas Darvas and Chinh Lu.[-]
Since the proof of the Calabi conjecture given by Yau, complex Monge-Ampère equations on compact Kähler manifolds have been intensively studied.
In this talk we consider complex Monge-Ampère equations with prescribed singularities. More precisely, we fix a potential and we show existence and uniqueness of solutions of complex Monge-Ampère equations which have the same singularity type of the model potential we chose. This result can be ...[+]

32J27 ; 32Q15 ; 32Q20 ; 32W20

Sélection Signaler une erreur